
Abstract - Tschernichite is a very rare zeolite structurally
related to the synthetic zeolite beta, a useful catalyst for sev-
eral reactions. Both the natural phase and its synthetic coun-
terpart present structural disorder evidenced by the presence
of a set of diffuse reflections. The OD character of these zeo-
lites is presented and discussed in order to give indication of
the common symmetry properties of the whole family and to
derive and describe the most simple polytypes. Two MDO
(Maximum Degree of Order) structures exist in this OD fam-
ily and correspond to the main polytypes: MDO1, tetragonal,
with space group P4122 and cell parameters a = b ≈ 12.5, c
≈ 26.4 Å (referred to as Tschernichite 4Q); MDO2, mono-
clinic, with space group C2/c and cell parameters a ≈ b ≈
12.5x√2, c ≈ 14.4 Å, b ≈ 114° (referred to as Tschernichite
2M). The common diffraction features of the whole family
(corresponding to the «family structure», with space group
P42/mmc and cell parameters a = b ≈ 4.2, c ≈ 13.2 Å), as well
as the diffraction peculiarities of the MDO structures, are
derived and discussed on the basis of the OD character of the
compound.

Key words - OD theory, polytypism, X-ray diffraction fea-
tures, beta-type zeolite, tschernichite.

Riassunto - Carattere OD e forme politipiche della tscher-
nichite e del corrispondente composto sintetico zeolite beta.
La tschernichite è una rarissima zeolite naturale struttural-
mente correlata alla zeolite beta sintetica, catalizzatore uti-
lissimo in molte reazioni. Sia la fase naturale sia il corri-
spondente composto sintetico mostrano disordine strutturale,
chiaramente evidenziato dalla presenza di un insieme di
riflessi caratterizzati da diffusione in una specifica direzione.
Il carattere OD di queste zeoliti è presentato e discusso allo
scopo di dare indicazioni sulle proprietà di simmetria comu-
ni all’intera famiglia di strutture OD e di derivare e descri-
vere i politipi più semplici. Esistono, in tale famiglia, due
strutture MDO (Maximum Degree of Order), corrispondenti
ai due principali politipi: MDO1, tetragonale, con gruppo
spaziale P4122 e parametri di cella a = b ≈ 12,5, c ≈ 26,4 Å
(denominato Tschernichite 4Q); MDO2, monoclino, con grup-
po spaziale C2/c e parametri di cella a ≈ b ≈ 12,5x√2, c ≈
14,4 Å, b ≈ 114° (denominato Tschernichite 2M). Gli aspet-
ti «diffrattometrici» comuni all’intera famiglia (caratteristici
della «struttura di famiglia», con gruppo spaziale P42/mmc e
parametri di cella a = b ≈ 4,2, c ≈ 13,2 Å), nonché le pecu-
liarità dei diffrattogrammi delle due strutture MDO, sono
ricavati e discussi sulla base del carattere OD del composto.

Parole chiave - Teoria OD, politipismo, aspetti diffrattome-
trici, zeolite beta, tschernichite.
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INTRODUCTION

Zeolite beta, first described in 1967 by Wadlinger et al.
(1967), is a large-pore high-silica zeolite with a three-
dimensional channel system. Due to its peculiar pore
structure and high acidity, zeolite beta is a very impor-
tant catalyst for a wide spectrum of reactions, where its
activity and selectivity play a relevant role.
The framework structure of this zeolite was solved
independently by Newsam et al. (1988) and Higgins et
al. (1988) through a clever combination of various
techniques, from model building to DLS refinement,
high resolution electron microscopy imaging, electron
diffraction, X-ray powder diffraction and X-ray pow-
der pattern simulation. The authors established the lat-
tice geometry of zeolite beta by X-ray and electron dif-
fraction data, pointing – through observation of hk0
diffraction pattern – to a net with a = b ≈ 12.5 Å. They
discussed the peculiar diffraction pattern of the com-
pound, characterized by a set of sharp reflections at h
= 3n and k = 3n, and a set of diffuse maxima for h ≠
3n or k ≠ 3n, frequently superimposed to continuous
streaks parallel to c*, pointing to a structure disordered
in the direction normal to (001) with disorder charac-
terized by ±a/3 and ±b/3 displacements in the (001)
plane. Both Newsam et al. (1988) and Higgins et al.
(1988) agreed that the structure of zeolite beta could be
described as a disordered sequence of different poly-
types with frequent planar faults. More precisely
according to Newsam et al. (1988) it may be described
in terms of only two polytypes: polytype A, tetragonal
with space group symmetry P4122 (or P4322) and cell
parameters a = b ≈ 12.5 Å and c ≈ 26.4 Å, and poly-
type B, monoclinic with space group symmetry C2/c
and cell parameters a ≈ b ≈ 12.5x√2 Å, c ≈ 14.4 Å and
b ≈ 114°. According to Higgins et al. (1988) a third
polytype is present besides those just indicated: poly-
type C, monoclinic with space group symmetry P2
(actually P2/c) and cell parameters a ≈ b ≈ 12.5 Å, c ≈
27.7 Å and b ≈ 107°.
The occurrence of the natural counterpart of synthetic
zeolite beta at Goble, Oregon, USA, was described by
Smith et al. (1991), who named tschernichite the new
natural species. The occurrence of the structure-type of
zeolite beta in a natural phase is extremely important,
as it implies, as correctly suggested by Smith et al.
(1991), that an organic template may not be necessary
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for the synthesis and that, as suggested by the Si:Al
ratio of tschernichite, crystals of zeolite beta with rel-
atively low Si:Al ratio may be prepared.
In the report by Smith et al. (1991) it was observed that
«the tschernichite patterns match best with computed
X-ray pattern for an approximately equal amount of the
A and B arrangements in a random sequence», where A
and B refer to the polytypic forms described by Newsam
et al. (1988) and Higgins et al. (1988). A more detailed
study of the mineral by Boggs et al. (1993) pointed to
the presence in the Goble Creek basalt of tschernichite
crystals of two distinct types, namely as large single or
twinned crystals and as small drusy crystals building up
radiating hemispherical groups. The chemical analyses
performed for both crystal types revealed a higher sili-
ca content in the small crystals than in the large ones,
«probably as a result of differing condition during their
formation» (Boggs et al., 1993).
Later, tschernichite crystals displaying the two mor-
phological types were found by Galli et al. (1995) in
fractures of basalts from Mt. Adamson (Northern Vic-
toria Land, Antarctica). As pointed out by these authors,
the powder pattern reported by Boggs et al. (1993) for
the specimen from Goble shows significant differences,
mainly in the low q range, with respect to that report-
ed for Mt. Adamson tschernichite; these differences in
the powder patterns were attributed to a different ratio
of the two A and B polymorphs and/or the presence of
other beta-type polytypes.
A structural study through single-crystal X-ray diffrac-
tion was carried out on crystals of both morphological
types from Mt. Adamson by Alberti et al. (2002). Their
study revealed the great prevalence of polytype B
(monoclinic) in the large crystals and polytype A
(tetragonal) in the small crystals and indicated that
only a small amount (if any) of the tetragonal polytype
was present in dominantly monoclinic crystals and vice
versa. The structural refinements were carried out on
data collected with automatic four-circle Nonius Kap-
paCCD diffractometer (MoKa radiation) and con-
verged to R = 0.132 [2322 unique reflections with
Fo>5s(Fo)] for polytype B [C2/c, a = 17.983(3), b =
17.966(2), c = 14.625(2) Å, b = 114.31(1)°] and R =
0.106 [1434 unique reflections with Fo>5s(Fo)] for
polytype A [P4122, a = 12.634(1), c = 26.608(3) Å].
Newsam et al. (1988) described, besides the A and B
polytypes, another possible phase for zeolite beta, built
up by stacking succeeding layers without displace-
ments in the (001) plane and named it polymorph C [it
is proper to stress that it is distinct from the polytype
C described by Higgins et al. (1988)]. It is tetragonal
with cell parameters a ≈ 12.5, c ≈ 13.3 Å and space
group P42/mmc and its framework is characterized by
linear 12-membered-ring channels running along c, as
well as by the presence of double 4-rings of tetrahedra.
This structure-type, coded BEC by the Structure Com-
mission of International Zeolite Association, has been
first found by Conradsson et al. (2000) in FOS-5, a
new porous material, with chemical composition
[(CH3)3N]6[Ge32O64](H2O)4.5, obtained as small needle-
shaped crystals from an aqueous solution containing
germanium dioxide and hydrofluoric acid. Actually

FOS-5 is tetragonal, with space group symmetry
I41/amd and a = 22.990, c = 27.271 Å, but the ger-
manate framework topology is the same of BEC. Sub-
sequently the preparation of the pure C structure-type
with composition Si1-xGexO2 or of distinct single-crys-
tal pillars of the C structure-type overgrown on ordi-
nary zeolite beta has been realized by Corma et al.
(2001) and Liu et al. (2001) respectively, from high
Ge/Si and/or fluoride containing media. Whereas Cor-
ma et al. (2001) determined the structure of the single-
phase Si1-xGexO2 compound by Rietveld refinement of
powder X-ray diffraction data, Liu et al. (2001)
revealed the structural arrangement of the «overgrown
pillars» with a new procedure combining HRTEM
imaging with the use of a Patterson map, derived from
SAED patterns, to enhance the sharpness of the peak
positions (Ohsuna et al., 2002).
It is interesting to recall that Newsam et al. (1988)
clearly stated that «neither electron diffraction micro-
graphs, nor powder X-ray diffraction data provide any
evidence for the occurrence of the structure C stacking
arrangement in any of the zeolite beta samples stud-
ied» by them. Also in the subsequent preparations of
phases characterized by BEC structure-type, that topol-
ogy does not actually mix with those corresponding to
the ordinary zeolite beta, as also in the preparation by
Liu et al. (2001) the «overgrown pillars» present a
peculiar morphology and are neatly distinguished from
the matrix of zeolite beta.
The neat distinction between the BEC structure-type
on one side and the various polytypic forms of zeolite
beta and tschernichite on the other side can be most
clearly appreciated on the basis of the OD approach.
The OD character of zeolite beta has been first indi-
cated by Marler et al. (1993) who prepared relatively
large single crystals and collected the full set of sharp
reflections, corresponding to the average structure
(family structure in OD terminology), with a = b =
4.121, c = 13.01 Å, space group P42/mmc, and refined
that sub-structure to conventional R = 0.054. The OD
character has been subsequently shortly discussed by
Böhme (1993) and by Reinecke et al. (1999).
A more detailed presentation of the OD character of
zeolite beta, and its natural counterpart tschernichite,
will be presented in the following, with indication of
the correct symmetry properties of the whole family
and derivation of the two [not three, as maintained by
Böhme (1993)] MDO structures, namely those
sequences of OD layers realizing the Maximum Degree
of Order.
It will appear that the OD approach favours a deep
understanding of the complex structural aspects in the
whole family, consents an easy interpretation of the
peculiar diffraction patterns and explains the frequent
occurrence of few polytypes (generally the A and B
forms). Moreover it will permit to construct more com-
plex polytypes with easy derivation of their metrics
and symmetries. As a matter of fact the OD approach
was instrumental in the interpretation of the diffraction
data collected from the specimens of tschernichite from
Mt. Adamson and, more generally, in the whole struc-
tural study of tschernichite (Alberti et al., 2002).
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OD CHARACTER OF TSCHERNICHITE

The peculiar diffraction features as well as the poly-
typic character of zeolite beta and tschernichite clear-
ly indicate they are OD structures (Dornberger-Schiff,
1956, 1964, 1966; Ďurovič, 1997; Merlino, 1997; Fer-
raris et al., 2004) consisting of equivalent layers. In
those structures neighbouring layers can be arranged in
two or more geometrically, and therefore energetically,
equivalent ways; distinct ways – two ways in the pre-
sent case – of stacking neighbouring layers allow the
existence of a series of both disordered and ordered
sequences (polytypes), all of them constituting a fam-
ily of OD structures. In all the members of the family
pairs of adjacent layers are geometrically equivalent. A
very interesting, peculiar character of the present fam-
ily is that also triples of adjacent layers are geometri-
cally equivalent. The various disordered and ordered
structures display diffraction patterns with common
features (family reflections: reflections which present
the same position and intensities in all the structures of
the family, namely reflections with h,k = 3n in the pre-
sent case, with reference to the a and b vectors of the
single layer) and can be distinguished for the position
and intensities of the other reflections. The family
reflections are always sharp and define the unit cell of
the family structure (a = b = 4.2, c = 13.2 Å, space
group P42/mmc), whereas the other reflections can be

more or less diffuse, sometimes appearing as continu-
ous streaks along c*, if the two stacking ways follow
each other in a random sequence. In case of single
ordered sequences (polytypes), also reflections corre-
sponding to h or k different from 3n will be sharp and
will correspond to the particular structure with its spe-
cific periodicities and space group symmetry.
The symmetry properties common to all the members
of an OD family are described by the OD groupoid
family symbol, which reports the partial symmetry
operations (POs) which transform each layer into itself
(l operations), or into an adjacent one (s operations).
The symbol allows to obtain the symmetry properties of
each particular ordered sequence, the general features of
the diffraction pattern and to correctly derive the MDO
(Maximum Degree of Order) structures, namely those
polytypes in which not only pairs (and triples, in this
particular family) of layers, but also quadruples … n-
tuples of layers are geometrically equivalent. MDO poly-
types are the simplest among all the possible ordered
sequences and usually correspond to the most frequent-
ly occurring polytypes in the family.
On the basis of the reliable structural arrangements
obtained by Higgins et al. (1988) and Newsam et al.
(1988) for zeolite beta, the structure of tschernichite
can be described in terms of structural layers (Fig. 1:
rows of up-pointing tetrahedra run along b and rows of
down-pointing tetrahedra run along a; the two kind of

Fig. 1 - Schematic drawing of the single layer in zeolite beta and tschernichite, with indication of the l operations.
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rows are connected through additional tetrahedra), with
basic vectors a, b (translation vectors of the layer, with
a = b = 12.5 Å) and co (co = 6.6 Å) and layer group
symmetry P 4—m2 (l POs), or more precisely:

P m m (4—) 2 2 (a)

(The layer groups, or two-sided planar groups, are the
groups of symmetry operations of a structure built up
with three-dimensional objects, but with two-dimen-
sional lattice. The eighty layer groups were derived
more than seventy years ago by Alexander & Hermann
[1929], Weber [1929], Heesch [1930] and introduced
in the crystallographic literature by Holser [1958a,b]
and afterwards by Dornberger-Schiff [1956] in her pre-
sentation of OD theory.)
In the case of square lattices (as well as in the case of
trigonal/hexagonal lattices) more than three positions
are necessary to indicate the operators related to the
various directions. With the square lattice the operators
corresponding to the direction a, b, c, a+b, a-b have to
be specified; the parentheses in the symbol (a) indicate
that the direction c is that of missing periodicity.
OD theory derives the various possible sets of s-oper-
ations compatible with each layer group and presents a
complete list of possible OD groupoid families. In the
case of the layer group (a) there are two possible OD
groupoid families. The correct one for the present OD
family, as well as the translational components of its s-
operations, may be derived considering that the l- and
s-operations must be in keeping with the operations of
the family structure (as it will be explained in the fol-
lowing) and its symbol is here reported

P m m (4—) 2      2
{ 2  22/3 (44/n0,2/3) n-1/3,2 n1/3,2 } (b)

or, more simply:

P m m (4—) 2     2
{ 2  22/3 (44/b2/3) n-1/3,2 n1/3,2 } (c)

The notations used for s-POs are analogous to the
international notations for space group operations; for
example 22/3 in the second position in (c) indicates a
twofold screw axis parallel to b with translational com-
ponent b/3; 44 in the third position in (c) indicates a
fourfold screw axis parallel to co with translational
component co; n1/3,2 in the last position in (c) indicates
a n glide normal to a-b, with translational component
(a+b)/6+co.
As it was previously mentioned, the family structure
has space group P42/mmc, with a = b = 4.2, c = 13.2
Å. Namely its a and b parameters are one third of the
corresponding parameters of the single layer, whereas
its c parameter is twice the corresponding co parameter
of the single layer. The symmetry operations of the
space group of the family structure may be derived by
considering both l and s operations in the symbol (b),
modifying the translational components of any screw
and glide in agreement with the passing from the para-
meters of the single layer to the parameters of the fam-

ily structure, namely multiplying by three the transla-
tional components referring to a and b and dividing by
two those referring to co.
The symbols (b) and (c) mean that the whole family of
structures is characterized by layers as those repre-
sented in Figure 1, layers which follow each to the oth-
er through the s-operations listed in the second row of
(b) and (c) and represented in Figure 2.
Note that all the s-operations listed in (b) or (c) bring
the second layer in one position relatively to the first
layer. The other geometrically equivalent position of
the second layer may be obtained by the action of a set
of s-operations related to the previous ones through
the l-operations of the layer. Let us look at the opera-
tor b2/3 (normal to c in Fig. 2); due to the symmetry
plane normal to b in the layer, both translations by b/3
or by -b/3 (after the mirror operation) may be applied;
the two operators are denoted b2/3 and b-2/3 respective-
ly and both give rise to geometrically equivalent pairs
of layers. The new layer now presents the ribbon of up-
pointing tetrahedra running along a and the corre-
sponding s-operators are now denoted a2/3 and a-2/3.
Infinite possible sequences may exist, corresponding
to the infinite sequences of alternating operators b±2/3
and a±2/3.

DERIVATION AND SYMMETRY
OF THE TWO MDO POLYTYPES

Among the infinite possible sequences of layers, two
of them correspond to the MDO structures. A useful
concept in deriving the MDO structures is the concept
of generating operation. Each MDO structure is char-
acterized by a generating operation, namely that oper-
ation which, by its continuous application, gives rise to
the structure; the use of one operation guarantees for
the homogeneity of the stacking sequence. One such
operation is that indicated 44 in Figure 2. By applying
it [rotating by 90° counter-clockwise and by translat-
ing the whole vector c0 (c0 = 6.6 Å, the width of the
layer)] the new layer is in such position that it is pos-
sible to re-apply the operation 44, etc. Through a con-
stant application of the operation 44 we build up the
MDO1 structure: the 44 partial operation becomes a
total 41 operation in a tetragonal structure with a = 12.5
Å and c = 4c0 = 4 x 6.6 Å; one diagonal l-operation 2
in each layer becomes total operation (at z = 1/8, 3/8
…), whereas the s-operations 2 become total twofold
rotations at z = 1/4, 3/4 …; the resulting space group
is P4122. MDO1 corresponds to the structure-type A of
Higgins et al. (1988) and Newsam et al. (1988).
A second generating operation is the glide reflection of
type n1/3,2 [reflection in a plane normal to a-b and trans-
lation of c0+(a+b)/6]. The application of that operation
brings the layer in such position that the same opera-
tion may be applied once more. A repeated application
of this operation gives rise to the MDO2 structure. To
obtain the symmetry and metrics of it, we may first
observe that the double application of the operation
n1/3,2 corresponds to a pure translation of (a+b)/3+2c0.
Assuming the reference frame with a’ = -(a+b); b’ =
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a-b; c’ = 2c0+(a+b)/3, we observe that a’,b’ plane is
centered (C centering); the glide reflection n1/3,2 (par-
tial symmetry operation) becomes a total glide opera-
tion c in a cell with the c’ vector just indicated (Fig. 3);
moreover the twofold axis parallel to (a-b) of the sin-
gle layer is total symmetry element valid for the whole
structure, which therefore has space group C2/c (a’ =
17.7, b’ = 17.7, c’ = 14.5 Å, b = 114°) and corresponds
to the structure B of Higgins et al. (1988) and Newsam
et al. (1988).
The operational element 44 may act also in another
position, related to the first one through the mirror
plane normal to a in the single layer. In this case the
constant application of the clockwise rotation by 90°,
followed by the translation c0, gives rise to the struc-
ture MDO1’, with space group symmetry P4322, enan-
tiomorphous of MDO1.
Moreover four distinct operational elements of type
n1/3,2 may be active, related each to the other by the
mirror planes of the single layer: they give rise to four
twin-related MDO2 structures.
In conclusion there will be the following MDO struc-
tures:
– MDO1 P4122 P4322 (enantiomorphous structures)
– MDO2 C2/c (four possible twin-related orientations 

of the same structure)

In the Appendix we shall discuss the diffractional fea-
tures of zeolite beta and tschernichite on the basis of
their OD character and shall compare the results
obtained for both MDO polytypes with selected dif-
fraction patterns.

EXAMPLE OF POSSIBLE POLYTYPES
AND NOMENCLATURE

Obviously, besides the two MDO structures, an infinite
number of other polytypes may be sketched, corre-
sponding, as suggested above, to the infinite sequences
of alternating operational elements b±2/3 and a±2/3. They
may be conveniently denoted by a sequence of sym-
bols in which ±a/3 and ±b/3 regularly alternate. The six
simplest sequences (up to six layers in the repeat unit)
are given in the following, with indication of the repeat-
ing sequence, the name of the polytype of the natural
phase, tschernichite, according to the indications of the
IMA-IUCr Joint Committee on nomenclature (Bailey
et al., 1977), as well as the unit cell parameters and
space group symmetry. The cell parameters of the var-
ious polytypes have been derived assuming the fol-
lowing values for the parameters of the single layer: a
= b = 12.5, co = 6.6 Å.

Fig. 2 - Schematic drawing of the single layer in zeolite beta and tschernichite, with indication of the s operations.
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– 2 layers in the repeat unit:
[b/3; a/3] … (Fig. 4) - MDO2 - Tschernichite 2M;
polytype B of Higgins et al. (1988) and Newsam et
al. (1988); C2/c, a ≈ b ≈ 12.5 x √2 = 17.7 Å, c ≈
14.5 Å, b ≈ 114°.

– 4 layers in the repeat unit:
[b/3; a/3; -b/3; -a/3] … (Fig. 5) - MDO1; Tschernichite
4Q; polytype A of Higgins et al. (1988) and Newsam
et al. (1988); P4122, a = b ≈ 12.5, c ≈ 26.4 Å.
[b/3; a/3; -b/3; a/3] … (Fig. 6) - Tschernichite 4M;
polytype C of Higgins et al. (1988); P2/c, a ≈ 12.5,
b ≈ 12.5, c ≈ 27.7 Å, b ≈ 107.5°.

– 6 layers in the repeat unit:
[b/3; a/3; -b/3; -a/3; -b/3; a/3] … (Fig. 7) - Tscher-
nichite 6M1; C2/c, a ≈ 17.7, b ≈ 17.7, c ≈ 40.1 Å, b
≈ 98.6°.
[b/3; a/3; -b/3; -a/3; b/3; a/3] … (Fig. 8) - Tscher-
nichite 6M2; C2, a ≈ 17.7, b ≈ 17.7, c ≈ 40.1 Å, b
≈ 98.6°.
[b/3; a/3; b/3; a/3; b/3; -a/3] … (Fig. 9) - Tscherni-
chite 6A; P1—; a ≈ 12.5, b ≈ 12.5, c ≈ 41.7 Å, a ≈
107.5°, b ≈ 95.9°, g ≈ 90°.

CONCLUSION

The preceding OD discussion plainly explains the fre-
quent – sometimes exclusive – occurrence in speci-
mens of tschernichite and zeolite beta of the A and B
polytypes, just those polytypes corresponding to the
two MDO structures of this family, namely the struc-
tures presenting a full homogeneity in the stacking
sequence.

Moreover the OD approach may be very helpful to
reliably and easily interpret the complex diffraction
patterns of zeolite beta and tschernichite. Each diffrac-
tion pattern presents a set of sharp reflections common
to all polytypes (for h and k equal to 3n, relatively to
the a and b parameters of the single layer), a set which
offers a convenient reference frame; by carefully look-
ing at the reflections with h or k different from 3n, it is
possible to obtain information about the degree of dis-
order (a random sequence of layers gives rise to con-
tinuous streaks along c*), about the presence of ordered
domains (more or less diffuse maxima at proper posi-
tions in the reciprocal space), their relative volume, as
well as about the presence of twin-related orientations
of domains.
The OD discussion also clearly indicates that the poly-
morph C firstly described by Newsam et al. (1988)
does not belong to the OD family of zeolite beta and
tschernichite. In that structure-type the layers stack in
a unique and distinct way; actually it does not general-
ly occur in samples of zeolite beta and tschernichite;
also in the case of the preparation by Liu et al. (2001)
the single-crystal pillars of the C polymorph appear
neatly distinguished from the matrix of zeolite beta
polytypes.
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Fig. 3 - Reference frame assumed for the MDO2 polytype.
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Fig. 5 - Schematic reconstruction of Tschernichite 4Q (see caption of Fig. 4 for the symbols).

Fig. 4 - Schematic reconstruction of Tschernichite 2M. The single layers are represented by a square in which the dotted line corresponds
to the ribbon of down-pointing tetrahedra and the continuous line corresponds to the ribbon of up-pointing tetrahedra. The stacking sequence
is shown by layer numbers, with light arrows indicating the path of the stackings. The bold arrow indicates the c’ vector of the polytype.
The symmetry operations of the polytype are also indicated. The numbers (1.5, 2.5, 3.5) placed near to the symbols of the symmetry cen-
ters indicate that they are located at intermediate levels between neighboring layers. The orientation of the starting layer is presented on the
left side of the drawing, whereas the orientation of the resulting structure is given on the right side of the drawing.
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Fig. 6 - Schematic reconstruction of Tschernichite 4M (see caption of Fig. 4 for the symbols).

Fig. 7 - Schematic reconstruction of Tschernichite 6M1 (see caption of Fig. 4 for the symbols).
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Fig. 8 - Schematic reconstruction of Tschernichite 6M2 (see caption of Fig. 4 for the symbols).

Fig. 9 - Schematic reconstruction of Tschernichite 6A (see caption of Fig. 4 for the symbols).
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It seems useful to discuss the diffractional features common to all polytypes, and also to the disordered sequences, in the
whole OD family of tschernichite, as well as the characteristic features of individual polytypes. In particular it is useful to
describe the diffractions which characterize the two most important polytypes, namely MDO1 (Tschernichite 4Q) and MDO2
(Tschernichite 2M).
The Fourier transform of the whole structure may be obtained summing the contributions of the single layers

F(r*) = Sq Fq(r*)

The Fourier transform can be different from zero only in points hkl (indices are referred to the parameters of the single lay-
er with a = b = 12.5, co = 6.6 Å) of the reciprocal space, if the layers are periodic with translation vectors a, b. The succes-
sion of the layers may be periodic or aperiodic; therefore the Fourier transform may be different from zero for discrete val-
ues of l or for any value of l. Consequently we shall obtain either diffraction patterns with only sharp spots, or diffraction
patterns with diffuse «streaks»; moreover, as a disordered structure may contain ordered domains, we may also observe rel-
atively sharp maxima placed on the diffuse «streaks».
As previously described, starting from the layer Lo [we shall indicate fo(hkl) its contribution], the subsequent layer is relat-
ed by a reflection in the plane of the layer and translation by ±b/3; the atomic coordinates x, y, z in Lo are transformed to
coordinates x, y±1/3, -z+1 in L1. The following notation is used:

[L1] = [-Lo] ±b/3 + co; its contribution is f1(hkl) = fo(hkl—) exp[2pi(±k/3+l)]

The next layer L2 is related to L1 through a reflection in the plane of the layer and translation by ±a/3; etc. By using the nota-
tion just introduced:

[L2] = [-L1] ±a/3 + co = [Lo] ±a/3 ±b/3 + 2co
[L3] = [L1] ±a/3 ±b/3 + 2co

It can be observed that all the even layers [L2q] and all the odd layers [L2q+1] are translationally equivalent to the layers [Lo]
and [L1] respectively, namely

[L2q] = [Lo] + m2q a/3 + n2q b/3 + 2q co;
[L2q+1] = [L1] + m2q+1 a/3 + n2q+1 b/3 + 2q co,

where m2q = S aj for the even layers; n2q = S bj for the even layers
m2q+1 = S aj for the odd layers; n2q+1 = S bj for the odd layers, with aj = ±1 and bj = ±1

The Fourier transform of the whole structure may be expressed as:

F(hkl) = fo(hkl) So(hkl) + {fo(hkl—) exp[2pi(±k/3+l)]} S1(hkl) (A1)
So(hkl) = Sq exp[2pi(hm2q/3 + kn2q/3 + 2ql)] (A2)
S1(hkl) = Sq exp[2pi(hm2q+1/3 + kn2q+1/3 + 2ql)] (A3)

As m2q, m2q+1, n2q and n2q+1 are integer numbers, obtained by summing +1 and -1 contributions in variable sequences, for h,k
= 3n the expressions (A2) and (A3) become:

So(hkl) = S1(hkl) = Sq exp[2pi(2ql)] (A4)

This expression is independent on the parameters m2q, m2q+1, n2q and n2q+1, namely is independent on the disorder. With a large
number of layers the expression (A4) vanishes except for values of l = l/2, with l integer (namely for l = … -1, -0.5, 0, 0.5,
1, 1.5, 2 …). These values define a c repeat in direct space which is 2co. Moreover the rule h,k = 3n points to a and b vec-
tors which are one third of the corresponding vectors of the single layer, just defining the basic vectors of the family struc-
ture. In fact the reflections we are discussing about are not affected by disorder, they are always sharp and have the same
values for any possible sequence of the layers (family reflections).
The diffraction patterns of the various polytypes (diffraction patterns which differ only in reflections with h or k = 3n±1) will
be obtained from the expressions (A1), (A2) and (A3), on the basis of the actual sequence of layers.
For the polytype MDO1 (Tschernichite 4Q) the sequence of layers is denoted as [b/3; a/3; -b/3; -a/3] and is represented in
Figure 10 a. The sequence of even layers L2q is such that the layers L4q+2 (L2, L6, L10 …) are translated by a/3 + b/3 with
respect to Lo, whereas the layers L4q (L4, L8 …) are not translated at all with respect to Lo. The sequence of odd layers is such
that the layers L3, L7, L11 … are translated by a/3 - b/3 with respect to L1, whereas the layers L5, L9 … are not translated at
all with respect to L1. Therefore:
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So(hkl) = Sq {exp[2pi(h/3+ k/3 + (4q+2)l)] + exp[2pi(4ql)]} (A5)
S1(hkl) = Sq {exp[2pi(h/3 - k/3 + (4q+2)l)] + exp[2pi(4ql)]} (A6)

Let us consider the expressions (A5) and (A6) in the case h or k = 3n±1 (the case h,k = 3n has been already considered in a
general way, as it corresponds to that of the family reflections). Both expressions (A5) and (A6) vanish for a large number
of layers, except in cases l = l/4, with l integer. These values define a c repeat in direct space which is four times the co vec-
tor of the single layer, just corresponding to the repeat period cQ of the 4Q polytype. If the l indices are referred to cQ the
expressions (A5) and (A6) take the forms:

So(hkl) = Sq {exp[2pi(h/3+ k/3 + (q+1/2)l)] + exp[2piql)]} (A5’)
S1(hkl) = Sq {exp[2pi(h/3 - k/3 + (q+1/2)l)] + exp[2piql)]} (A6’)

These expressions may be used to calculate the approximate relative intensities of reflections in the various diffraction pat-
terns of the 4Q polytype. For example let us consider the hhl pattern: according to (A6’) S1(hhl) = 0; as regards (A5’) all the
terms of the sum are equal and the square of their module is 3 for h ≠ 3n and l = 2n+1, whereas it is 1 for h ≠ 3n and l =
2n. We may add that for h = 3n (family reflexions) the square of the module of each term in (A5’) is 0 for l = 2n+1 and 4
for l = 2n. Similar characteristic features, shown in Figure 10b and 10c, are displayed by the h0l pattern. The non-family
reflections (h ≠ 3n) are strong for l = 2n+1 and very weak (or not visible) for l = 2n. The expressions (A5’) and (A6’) for
the h0l reflections of MDO1 polytype are:

So(h0l) = S1(h0l) = Sq {exp[2pi(h/3 + (q+1/2)l)] + exp[2piql]} (A7)

All the terms of the sum (A7) are equal and the square of the module is 3 for h ≠ 3n and l = 2n+1, whereas it is 1 for h ≠
3n and l = 2n, which is in keeping with the observed diffraction pattern [for h = 3n, namely for the family reflections, the
square of the module of each term in (A7) is 0 for l = 2n+1 and 4 for l = 2n].
For the polytype MDO2 (Tschernichite 2M) the sequence of layers has been denoted as [b/3; a/3] and is represented in Fig-
ure 11a. The L2q and L2q+1 layers are translationally equivalent to Lo and L1 respectively, according to the same translation
vector:

T2q = 2q (a/3 + b/3) + 2q co

For this sequence the expressions (A2) and (A3) become:

So(hkl) = S1(hkl) = Sq exp{2pi [(2q(h + k)/3 + 2ql]} (A8)

We shall consider only the cases in which h or k ≠ 3n (non-family reflections).
For a large number of layers the expression (A8) vanishes except that for:
– values l = l/2 +1/6, with l integer, when h + k = 3n+1;
– values l = l/2 +2/6, with l integer, when h + k = 3n+2;
– values l = l/2, with l integer, when h + k = 3n.
The h0l pattern of this polytype is shown in Figure 11b and c.

(ms. pres. il 31 maggio 2006; ult. bozze il 1° febbraio 2007)
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Fig. 10 - a) Layer sequence in the MDO1 polytype as seen along a (the b and c0 axes of the starting layer are indicated). b) Detail of the
theoretical diffraction pattern h0l of the pure MDO1polytype. Detail of the diffraction pattern h0l of the dominant tetragonal polytype (small
crystal after Alberti et al., 2002) of tschernichite.
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Fig. 11 - a) Layer sequence in the MDO2 polytype as seen along [-1 1 0], with reference to the a’, b’, c’ frame of Figs. 3 and 4. The b and
c0 axes of the starting layer are indicated. b) Detail of the theoretical diffraction pattern h0l (indices referred to the «tetragonal» cell of the
single layer) of the pure MDO2 polytype; it corresponds to the hhl diffraction pattern in the reference frame of the polytype MDO2. c) Detail
of the diffraction pattern h0l (indices referred to the «tetragonal» cell of the single layer) of the dominant monoclinic polytype (large crys-
tal after Alberti et al., 2002) of tschernichite.


