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The technological innovation in biology and agriculture often leveraging on innovation in computer science and en-
gineering, pushed forward the process of integration among these disciplines. In particular, information technology (IT) 
provides common methodologies and tools for the automatic acquisition and analysis of the data that concern the manage-
ment and optimization of the natural and territorial resources.

In agriculture, applications of IT enable the integration of interventions concerning its sustainability and productivity, 
by offering methods and tools to monitor, control, analyse and optimize the production while keeping it respectful of the 
environment. Similarly, the best practices for bio sustainability, for the management of bio-diversity and for the bioremedi-
ation of the environment (including soil, water etc…) are also progressively adopting IT, which enable more focused (and 
thus more effective) applications.

In this context, the conference “Technologies and innovation for sustainable management of Agriculture, Environment 
and Biodiversity” (TI4AAB), was held in July 2016 at the Natural History Museum of the University of Pisa located in the 
Calci Charterhouse (Calci, province of Pisa) in order to encourage the sharing of emerging knowledge about the above 
topics.

In fact, the conference was dedicated to fostering innovative cross-disciplinary research and applications and to stimu-
lating the exchange  of strategies and experiences, among academic and company experts from different disciplines (agri-
culture, biology, computer science and engineering and environmental decision making), in order to encourage a common, 
interdisciplinary discussion about the adoption and perspectives of IT in modern agriculture, environmental management, 
biodiversity and bio-sustainability in general. 

The conference was held under the auspices of the municipality of Calci, the University of Pisa and of the “Ordine dei 
Dottori Agronomi e Dottori Forestali”. It was also attended and supported by some leading national and worlwide indus-
tries, like CAEN RFID, OSRAM, STMicroelectronics, EBV Elektronik, Qprel Srl, AEDIT Srl, EMipiace Srl, and Zefiro 
Ricerca & Innovazione Srl, and by the Italian National Forestry Authority.

This volume constitutes a selection of the contributions presented at the conference and cover the aspects of innovation 
in agriculture, biology, and applied information technology. In particular, concerning innovation in agriculture, the paper 
by Nin et al. studies new soilless cultivation systems for wild strawberry growing in the Tuscan Appennine mountains. The 
paper by Prisa describes experimental research concerning the use of zeolites in combination with effective microorgan-
isms, in order to improve the quality of olive trees. Finally, the paper by Lombardo et al. describes collaborative approaches 
to innovation in agriculture (co-generation of technology).

Concerning innovation in biology, the paper by Baldacci et al. describes the results of the preliminary phases of the 
AIS-LIFE project, which aims at developing aerobiological information systems in order to improve pollen-related allergic 
respiratory disease management. Still concerning the AIS-LIFE project, the paper by Natali et al.  aims to describe the 
strategy used in AIS-LIFE project, to evaluate daily pollen concentration in the atmosphere produced by many allergic 
plant species. The use of data and GIS system are shown as an approach to assess allergy risk maps.

Concerning innovation in computer science applied to agriculture and biology, two contributions focus on modeling 
approaches, and two contributions provide a survey of information technology applied to agriculture and biology. Spe-
cifically, the paper by Bodei et al. describes the application of the IOT-LYSA formal modelling framework to a possible 
scenario of grape cultivation, in order to assess water consumption, and the paper by Barbuti et al. proposes a mathemat-
ical model of artificial reefs, in order to study the dynamics of algal coverage and of populations of fish in some Italian 
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artificial reefs. Finally, the paper by Fresco et. al.  explores the current challenges and IT solutions in order to realize 
a digital agriculture framework, intended as an evolution from Precision Farming to connected knowledge-based farm 
production systems, and the paper by Pucci et al. provides a survey on biologging methodologies for the collection of 
knowledge about animals’ behaviour, making a review of some related common data analysis techniques.

All papers have been carefully reviewed by experts in the specific fields. Here is the list of the reviewers, that we thank 
for the collaboration.
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Abstract: R. Pucci, A. Micheli, S. Chessa. Wild animals’ biolog-
ging through machine learning models.

In recent decades the biodiversity crisis has been characterised by 
a decline and extinction of many animal species worldwide. To aid in 
understanding the threats and causes of this demise, conservation scien-
tists rely on remote assessments. Innovation in technology in the form of 
microelectromechanical systems (MEMs) has brought about great leaps 
forward in understanding of animal life. The MEMs are now readily 
available to ecologists for remotely monitoring the activities of wild an-
imals. Since the advent of electronic tags, methods such as biologging 
are being increasingly applied to the study of animal ecology, providing 
information unattainable through other techniques.

In this paper, we discuss a few relevant instances of biologging stud-
ies. We present an overview on biologging research area, describing the 
evolution of acquisition of behavioural information and the improve-
ment provided by tags. In second part we will review some common data 
analysis techniques used to identify daily activity of animals.

Keywords: Biologging, Machine Learning, Pattern recognition, 
Animal activity recognition.

Riassunto: R. Pucci, A. Micheli, S. Chessa. Biologging di animali 
selvatici tramite modelli di machine learning.

Negli ultimi decenni, la crisi della biodiversità è stata caratterizzata 
dal declino e dall’estinzione di molte specie animali nel mondo. Per studi-
are le minacce ambientali e le cause delle estinzioni, gli studiosi si basano 
su valutazioni eseguite a distanza. L’innovazione tecnologica nell’ambito 
dei sistemi microelettromeccanici (MEMs) ha portato a grandi avanza-
menti nella comprensione della vita degli animali. Al giorno d’oggi gli 
ecologi hanno facile accesso a dispositivi  MEMs, e possono usarli per 
monitorare da remoto le attività degli animali selvatici. Con l’avvento dei 
tag elettronici basati su MEMs, metodi quali il biologging hanno trovato 
sempre maggiore applicazione allo studio dell’ecologia degli animali, 
fornendo informazioni impossibili da ottenere attraverso altre tecnolo-
gie.

In questo articolo, discutiamo alcune studi significativi sul biolog-
ging. Presentiamo una panoramica di questa area di ricerca, descri- 
vendo l’evoluzione dei metodi di acquisizione di informazioni e il 
miglioramento ottenuto grazie ai tag. Nella seconda parte, passiamo in 

rassegna alcune tecniche di analisi di dati comunemente usate per identi-
ficare automaticamente le attività giornaliere degli animali.

Parole chiave: Biologging, Apprendimento Automatico, Machine 
Learning, Pattern Recognition, Riconoscimento di Attività Animali

1.	 ACQUISITION OF BEHAVIOURAL
	 INFORMATION BY BIOLOGGING

The acquisition of information about animal behaviour 
is one of the best ways to learn about their habits and needs, 
and to understand how to preserve the biodiversity of our 
planet (Wilson A.D. 2015). Visual observation (direct ob-
servation) is the simplest technique to survey the behaviour 
of wild animals. While the direct observation of an animal 
allows biologists to obtain a clear description of the ani-
mal life,≤ it is difficult in the case of most wildlife due to 
their high mobility, nocturnal life, and the danger to ob-
servers in accessing wild habitats. Even more challenging 
a habitat is the hydrosphere, since all the aforementioned 
reasons that make the observation of wildlife difficult are 
exacerbated due to it being underwater. The hydrosphere, 
however, is of vast importance to biodiversity preservation 
because it hosts 71% of Earth’s fauna.

While in the seas surface it is possible to use data logger 
float package (Whitney N.M. 2016) or remote controlled 
systems to at least record images of wildlife (Miller 2015), 
(Whitney 2007) in deep seas submersible remote operated 
vehicles (ROV) can be used. These tools, however, can not 
operate in the field for very long and their observation is 
only composed of sets of “snapshots”. 

The follow-up observation of an animal is a more inter-
esting way to obtain information. In this case technologi-
cal tools (hereafter referred to as tags) are attached or im-
planted onto the animals to collect data between a release 
point and a recapture point, operating solely as data loggers. 
Tags can collect both body and geo-local information which 
both contribute to discern the behaviour and attitude of the 
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animals. Follow-up observation allows a deep understand-
ing of animal life, but the attaching and detaching proce-
dure could be stressful for the animals under observation.

The follow-up observation and the log of signals by 
means of tags was first called biologging in 2004 by Rop-
ert-Coudert and Wilson in (Wilson 2004), distinguishing 
it as separate from biotelemetry (Boyd 2004). In this pa-
per we consider biologging to differ from biotelemetry in 
the sense that data are stored locally in the memory of the 
devices and not transferred via radio waves1. In addition, 
we consider biologging to be more focused on the research 
subject’s physiological information. 

In this work we review some of the most relevant works 
on biologging in order to examine its evolution and to 
highlight some important breakthroughs. In particular, we 
focus on the devices and sensors used in biologging studies 
in Section 2, and we focus on the methods of data analysis 
in sections 3 and 4. Section 5 draws the conclusions.

2.	 A BRIEF OVERVIEW ON BIOLOGGING
	 WITH TAGS

Data loggers have been used since the 1960s to observe 
areas previously  inaccessible, such as the hydrosphere. The 
first device used to obtain information about underwater 
activity was in 1965, in the form of a tag equipped with a 
time-depth sensor. It was used in one hour stints to mea-
sure the diving capacity of Weddell Seals (Leptonychotes 
weddelli) in Antarctica (Kooyman, G. L. 1965) (Kooyman 
G. L. 1966). The tags were attached to seals that were 
known to frequently visit  the same holes, thus allowing 
easy retrieval of the tags. Between the 60s and 70s there 
was a slow evolution of biologging. In these two decades 
the primary focus was to increase the operational length of 
the device, this was evident with the time-depth sensors. 
By the 80s, a revised architecture of these sensors enabled 
recording stints of up to three months. For example, in 
(Le Boeuf B. J. 1988) and later in (Boehlert G. W. 2001), 
Le Boeuf and Boehlert were able to take advantage of this 
revised architecture to monitor elephant seals (Mirounga 
angustirostris) at the Rookery in Año Nuevo, California.  

In this case a tag was left on an animal until it returned  
to the place where the tag was attached. It is worth noting 
that at this point this technology was only possible to be 
used with large animals on which large devices could be 
attached without hindering their movement. 

As biologging techniques matured, they were slowly 
also miniaturised. Smaller sensors and efficient battery, 
combined with the ability to design and package devices 
specific to individual species, opened up the possibility 
to begin research project with small animals. An example 
of the application on small animals is the study of the sea 
turtle (Caretta caretta), by mean of Global Positioning Sys-
tem (GPS),  (Schofield 2007). Turtles in Buck Island Reef, 
U.S. Virgin Islands, were equipped with tags and set free to 

1	 Note that this distinction is no universally valid but in (e.g. (Rutz 
2009), (Bograd 2010)) presented biologging systems which relay data 
through radio signals.

roam about in a diving enclosure for a period of time, after 
which the tags were retrieved. The tags in this case were a 
miniaturized data-logger, less than 10cm in length. 

At the same time, the follow-up style of observation be-
came popular in medicine for humans, advancing  research 
in activity recognition by sensors (Foerster F. 1999).  The 
medical interest in human activity recognition (HAR) re-
search gave a strong push to the technological devices used 
in these studies. 

Recent major reviews on biologging (such as (Cooke 
S.J. 2004), (Cooke J.S. 2008), (Bograd S.J. 2010), (Wilmers 
C.C. 2015)) explain further refinements and advances in bi-
ologging equipment (storage capacity, lifetime, and number 
and types of sensors on board).  The increase in data-logger 
performance makes it possible to use sensors with a high 
speed sampling rate such as accelerometers and magne-
tometers. The use of accelerometers introduced the pos-
sibility to detect specific movements of an animal’s body. 
A three-dimensional accelerometer provides more accurate 
diving information about elephant seals, as described in 
(Mitani Y. 2009). In (Viviant M. 2014) accelerometer data 
was used to detect when southern elephant seals (Mirounga 
leonine) open and close their mouths to monitor foraging 
activity. In both (Mitani Y. 2009) and (Viviant M. 2014) 
further studies were conducted on seals to predict forag-
ing success. In these studies, the seals were released from 
a point on the coast close to the capture site. Ropert-Cour-
dert, and Kato in (K. A. Ropert-Coudert Y. 2014) observed 
free-raging animals in Antarctica using biologging tech-
nologies. In this study tags were used to observe habits of 
predators such as seabirds, penguins, and seals in remote 
marine locations. Examples are presented in (Yoda K. 
2001), (G. D. Ropert-Coudert Y. 2004), (Gallon S. 2013), 
(Carroll G. 2014), (Volpov B.L. 2015), (Xavier J.C. 2016), 
and (Descamps S. 2016).

Table 1: In the table the first column lists animals that are subjects of 
studies in first column, the second column lists sensors used to collect 
behavioural data (time depth, accelerometer, gyroscope, and tilt sensor), 
and the third column shows of the activities recognised.

Animal Sensors Activities

Elephant seals
Time-depth,

3D acc.

Depth, movement of 
body, time immersion, 

opening mouth.

Weddell seals Time-depth Depth, time immersion.
Antarctic fur seals Time-depth Foraging activity
Hawksbill turtles Time-depth Depth, time immersion.
Testudo H. turtles 2D acc. Digging.

Little Penguins 3D acc. Prey captures activity.

Adelie Penguins 3D acc. Walk, toboggan, stand on 
land, lay on land and rest

Seabirds
Time-depth,

3D acc.,
tilt sensor

Take-off, flap, flight, 
plunge dive, and land.

Red Foxes 3D acc.,
magnetometer

Hunting movement, mag-
netic alignment.

Leopards 3D acc., gyro-
scope

Energy consumed.

Domestic dogs 3D acc. Walk, run, sit, lie-down, 
and stand.
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The confidence in biologging technologies in the deep 
seas promoted their application on land animals. Biolog-
ging rapidly became an important tool in understanding 
the behaviour of mammals and reptiles. While it is cer-
tainly easier to observe land animals than it is to observe 
sea animals, observing land animals has its fair share of 
dangers and difficulties for researchers. This is given more 
credence after noting that biologging techniques are often 
used in monitoring predators. Pumas (Puma concolor), for 
example, have proven difficult to study specifically due to 
their speed. The first study of pumas with tags was per-
formed in California, where tags were in the form of col-
lars equipped with accelerometers (Williams T.M. 2014). 
The objective of this study was to monitor movement dur-
ing hunting activities to infer the expenditure of energy. 
Similar tags were also used in (Painter M.S. 2016) to study 
the hunting behaviour of semi-domestic red foxes (Vulpes 
vulpes) in Prásily, Czech Republic. These tags, however, 
also contained  a magnetometer. The tags were retrieved at 
the end of the experiment. It is been found that  domestic 
dogs can be used as analogue of certain predators. An ex-
ample of using dogs in this manner is presented in  (Camp-
bell H.A. 2013), in which authors presented an exploratory 
study recording daily activities of dogs, also using collars 
with embedded accelerometers. 

Table 1 reports a summary of these studies. In partic-
ular it shows the sensors used and the activities monitored 
for each animal under study. 

The third column of Table 1 shows the activities ob-
served for each animal. Activities are chosen based on the 
subject of study and the aim of the research. Researchers 
have always been interested in studying animal body move-
ment and behaviour, however until recently this has been 
difficult. The introduction of accelerometers, magnetom-
eters, and gyroscopes in tags, has made this information 
much more easily accessible.  In the early studies, was not 
possible to transmit data due to power requirements. 

Recorded data was therefore usually stored in built-in 
memory storage inside the tags and was only accessible 
when the tags were rescued. This is a noteworthy limita-
tion from two points of view: the first is that retrieval of 
the tags is necessary, which means that the animal must 
be limited to a certain space or easy to find; the second is 
that the analysis of data can be done only at the end of each 
recording period and not in real time. More recently, these 
two issues brought the identification of animal behaviour 
in two main directions. One is towards providing a stan-
dard, autonomous behavioural annotation system able to 
recognise activity from data in an automatic way, (Resheff 
Y.S. 2014), and (Gao L. 2013). The second is towards the 
development of autonomous systems able to analyse data 
embedded on tags. That avoids the necessity of retrieving 
tags from animals, as in (Barbuti R. 2016).

3.	 TRADITIONAL METHODS OF ANALYSIS
	 OF BIOLOGGING DATA

The use of tags allows scientists to collect copious 
amounts of data on many aspects of an animal’s life. Such 

a huge amount of data, however, needs to be analysed in 
order to infer any useful information.  Conventional ap-
proaches to data analysis have, in the past, ranged from the 
direct observation of data streams by researchers, to signal 
analysis techniques. Inspiration for these techniques came 
from the field of HAR, which advanced  hastily due to the 
need for automatic tools to analyse data in  e-health appli-
cations.

In both HAR and biologging, conventional methods of 
data analysis require steps of filtering and feature extrac-
tion before applying specific methods of analysis.

In (Mitani Y. 2009) data were analysed for diving be-
haviour in elephant seals including stroking rates and 
three-dimensional movements. The signal streams were 
observed to identify spikes that elucidated the rotation 
movement performed by elephant seals to hunt their prey. 
This procedure was one of the first approaches and it was 
not automated, therefore requiring great effort from a hu-
man analyser. This approach, however, soon became obso-
lete and was replaced by automatic signal analysis. 

In (Gallon S. 2013), authors presented an example of 
signal analysis of behavioural data in seals. This study used 
tags with accelerometer and depth sensors mounted on the 
animal’s head. An initial set of data was used to identify 
the sensors’ data profiles. These profiles were identified for 
each activity.  The accelerometer and depth data were com-
pared with dive depth profiles and accelerometer profiles. 
The relationships between the behaviour and acceleration 
profiles were then used to identify the activities of animals. 
In (Yoda K. 2001) depth and accelerometer profiles were 
used in a similar way to identify Adelie penguins’ activities 
to observe their daily life. 

In all these studies the profiles were calibrated in an 
aquarium (and thus in a controlled environment) with a re-
stricted set of samples. The disadvantage of using an aquar-
ium as an analogue for the ocean is that the behaviour of 
the test subject may not accurately reflect the behaviour of 
subjects in the wild. The classification may achieve a good 
result, however there is a potential for the classification sys-
tem to be not general enough for use in the wild. 

Statistics analysis is a method commonly used in bi-
ologging to extract information.  Tools such as R (Venables 
W.N. 2016), a programming environment for data analy-
sis and graphics, provides statistics about individual be-
haviour of animals and can be used to write customised 
data analysis routines. An example of this technique is pre-
sented in (Volpov B.L. 2015), in which the study subject 
was fur seals. A custom routine, written in R, inspired by 
(Viviant M. 2014) was used to classify the biologging data. 
The same technique has been used recently to classify bi-
ologging data form pumas, (Williams T.M. 2014). 

In this paper we refer to all these methods as traditional. 
However, recent trends in analysis of biologging data adopt 
methods based on Machine Learning (ML) to study com-
plex interaction between biotic and abiotic systems. ML 
can often outperform the traditional methods of analysis in 
classification tasks as reported in (Thessen A.E. 2016). In 
the following section we outline the advantage of machine 
learning in biologging. 
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4.	 MACHINE LEARNING MODEL
	 FOR BIOLOGGING

Machine learning (ML) methods have been used to 
analyse data recorded by MEMs. The robustness and the 
ability for universal approximation of these methods (e.g. 
Artificial Neural Networks) provide the basis for the flex-
ibility of the approach for pattern recognition. In particu-
lar, they allow the approximation of arbitrary classification 
functions from experimental data, despite not having a 
theory of pattern characteristics. This is particularly ad-
vantageous for non-linear classification/pattern recogni-
tion tasks, which can be difficult to address by traditional 
approaches. 

A ML classifier is inferred by data:  it is able to clas-
sify new data after being properly trained with known in-
stances. Artificial Neural Networks (ANNs) and Support 
Vector Machines (SVMs) are ML models capable of per-
forming well with noisy data, which is a common problem 
with animal behaviour data. 

In the ML approach, the designer of the application has 
to teach a model the background of a problem using a data-
set, hereafter called the training dataset. In the supervised 
class of tasks, the training dataset is a collection of refer-
ence data recorded through sensors and labelled appropri-
ately with ground truth information. During the training 
phase the ML model is automatically tuned by the learning 
algorithm to be able to classify data, (e.g. recognizing the 
pattern in the activity recognition scenario) according to 
the provided labelled examples. Several models are applied 
in data analysis within the field of biologging. Each model 
referred to in this paper is described in (Haykin S. 2009) 
and in (Thessen A.E. 2016). 

In this context, ML models are becoming more fre-
quently applied, achieving high classification capabilities. 
In (Painter M.S. 2016), a k-Nearest Neighbours (K-NN) 
model is applied to identify magnetic alignment responses 
during hunting in red foxes. In this case the training data-
set consists of the k closest examples used as seeds to clas-
sify future data streams. A data stream is classified by a 
majority behaviour referred by its neighbours’ seeds. The 
activity identified from a current data stream is assigned 
considering the most common activity identified by its k 
nearest neighbours. This model is applied in (Nathan R. 
2012) and in (Bidder O.R. 2014), where the ML models are 
proposed to classify the daily activity of several species. In 
such applications, the K-NN provides good performance 
across the dataset. This model, however, is prone to high 
variance, course of dimensionality, and overfitting issues, 
all of which can limit its generalization capability. To man-
age this problem, the focus changes from the K-NN to 
SVM. The SVM uses a set of seeds that corresponds to the 
support vectors used to classify each data stream, but also 
reduces the effect of the aforementioned issues by utilising 
maximum margin classifiers (Vapnik V. 2013). The SVM 
model was applied to identify prey capture in little pen-
guins (Eudyptula minor) as explained in (Carroll G. 2014). 
The model is trained over a sample dataset recorded from 
penguins in Taronga Zoo. The tuned model will be able to 
identify prey capture activity in wild penguins.  

In (Campbell H.A. 2013) the SVM model is applied to 
identify the activity of domestic dogs. The model distin-
guishes between five different activities and classifies each 
activity individually.  In both cases, data are analysed after 
the recording phase. Indeed, it is necessary that the tag is 
rescued to allow for data analysis in the laboratory. 

To analyse data in real-time is a more interesting chal-
lenge and will modify the way in which one analyses the 
data. Analyse data in real time means moving the analysis 
stage to the tag on board. Both K-NN and SVM methods 
need to maintain information about the seeds. This infor-
mation is necessary to classify the data streams but requires 
a specific amount of memory space. For this reason differ-
ent ML methods should be considered for the classification 
of data streams.

This is the main aim recently addressed with the fea-
sibility analysis in (Barbuti R. 2016). Authors present ML 
methods for classification of nest digging activity in tor-
toises (Testudo h. hermanni). The tag was equipped with an 
accelerometer, a light sensor, and a temperature sensor, all 
of which are used to identify the activity of the tortoises, 
and monitoring the surrounding environment. The ML 
proposed is a customised Input Delay Neural Network 
(IDNN). This model provides a solution that was designed 
to find a trade-off between the generality of the ML model 
in classification, and memory space needed. The result ob-
tained is a model with high performance accuracy and that 
is embeddable on a tag. The possibility to install the system 
on the tag is a big improvement for behavioural analysis. 
In this way tags on animals need not be retrieved after the 
recording season. 

5.	 DISCUSSIONS AND CONCLUSIONS

In this paper we analysed the use of traditional meth-
ods and ML models applied to biologging. In particular, 
we focused our discussion on the analysis of data stream 
recorded by tags attached to animals.

As we observed, the introduction of accelerometers 
and magnetometers in tags caused a dramatic increase in 
dataset size, which, in turn, created a need for automatic 
analysis. This allowed biologists to infer new and richer in-
formation from data in order to make supportive programs 
more effective. This new information paved the way for the 
automatic recognition of animal activities (such as forag-
ing, predating, nesting, etc.), and thus brought biologging 
from simple telemetry towards the research area of activ-
ity recognition, which was previously restricted to human 
cases (HAR).

It is worth noting that activity recognition in humans is 
deeply different from activity recognition in animals. This 
difference is made evident through three main aspects: (i) 
the sensors used to record movement information may be 
the same (accelerometers, and magnetometers) but the de-
vice and the location on the body could be different both 
due to physiological differences (e.g. the lack of paws for 
fish, the lack of wings for humans); (ii) the sensors them-
selves may be different (e.g., depth sensors are meaning-
ful for fish, and marine mammals but usually not for hu-
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mans); and (iii) the observed activities may be completely 
different. Furthermore, the data collecting procedure may 
be completely different for humans and animals, because 
even domestic animals may not follow instructions (in sim-
ulated scenario) to the same level of accuracy as a human 
subject for data gathering purpose. Finally, the collection 
campaign with animals is more complex to perform due to 
a lack of volunteers and environmental hazards. The result 
is that the analysis of data from animal activity represents a 
new challenge for activity recognition due to the heteroge-
neity of datasets, and to the variable quality of data. 

Table 2 shows the methods (either traditional or ML-
based) that were used in some meaningful biologging stud-
ies. Traditional techniques provide ad hoc solutions for 
given task, often basing on specific statistical assumption.  
On one hand the statistical analysis used in these meth-
ods provides good results over data samples. On the other 
hand, the solutions reached are often not general and thus 
difficult to apply in wild habitats. By contrast ML-models 
provide methodologies to build a model directly from (real) 
data. Moreover, they are intrinsically more flexible and can 
be used to automatically deal with a nonlinear relationship 
between data and outcomes of classification. 

Table 2 shows that biologists have been slow to adopt 
ML models as a way to analyse biologging data. We argue 
that this is due to many biologists’  familiarity with tradi-
tional statistical methods and, consequently, to their lack of 
familiarity with computer science methodologies. 

It is worth nothing that both ML methods and tradi-
tional methods are not necessarily applicable to all cases. 
Some research projects may well be more suited to a spe-
cific type of biologging analysis and individual projects 
should be considered on a case-by-case basis.  That being 
said, ML models in many cases provide better results than 
the traditional methods for classification and identification 
of activities. 

An interesting study, for example, could be to re-apply 
ML methods on datasets previously analysed using tradi-
tional methods to observe the differences and better assess 

the advantages that the former methods can give (in this 
respect, the production of open datasets is key). Traditional 
methods are in fact still widely used in recent works. For 
example, in (Gallon S. 2013), a 2-D accelerometer and a 
pressure sensor were used to record the rapid movement 
and the depth of seals to identify foraging activity. In this 
study, both depth and accelerometer information were 
analysed by means of thresholds to classify the signal as for-
aging or diving. In (Volpov B.L. 2015), accelerometer data 
was analysed with a customised function. This function is 
composed of a filter that computes six features  over each 
axes of accelerometer signal, and a classifier that identifies 
the signal using a custom matching function between the 
new signal and a dataset of previously labelled signals on 
a common time vector (synced).  In both  studies the  ML 
were models conveniently trained to identify the foraging 
event, thus allowing a better classification of the dataset, as 
it was observed, for different datasets in (Carroll G. 2014).

A different analysis could be done of the research pre-
sented in (Williams T.M. 2014). Accelerometer data were 
used to compute the energy expenditure of a puma during 
hunting. This problem was not an identification of an activ-
ity. ML models may be applied in this task as done in (Bac-
ciu D. 2015) to compute the energy expenditure associated 
with the physical activities.

The methods and models discussed in this paper are 
used in biologging for analysing the behavioural informa-
tion recorded by tags. Some next steps could be to promote 
the use of ML models, and to open new developments in 
recognition of more and more activities of animals.

Many possible solutions can be inferred from ML mod-
els to open the view to new challenges only partially ex-
plored. 
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