G. Ottonello (*), G. Taddeucci (**)

MOBILITÀ DEI COMPONENTI IN TRACCE DEI SILICATI IN AMBIENTE IDRATO: 1) ENERGIE DEI COMPOSTI SOLIDI E FORMULAZIONE DELLE REAZIONI DI DISSOLUZIONE

Riassunto — Vengono proposte stime dei valori di entalpia di formazione dagli elementi allo stato standard (298 °K, 1 bar; H_{f}^{o}), entropia (S°), volume molare (V°) e dei coefficienti delle funzioni di Mayer-Kelley del calore specifico (C_p) per componenti fittizi (orto e metasilicati) di elementi in tracce. Vengono formulate le reazioni di dissoluzione dei componenti stessi in fase acquosa e viene definito in modo quantitativo il concetto di mobilità in ambiente idrato per gli stessi elementi.

Summary — Mobility of trace components in hydrous environment: 1) free energy of solid compounds and dissolution reactions. Estimates of standard state (298.15°K, 1 bar) enthalpy of formation from the elements, entropy, molar volume and C_p coefficients for fictive ortho and metasilicate trace components are given.

Dissolution reactions of the same components in acqueous phase are discussed with particular emphasis on the concept of mobility in hydrous environment.

Key words — Enthalpy. entropy, free energy, trace elements, orthosilicates, metasilicates.

INTRODUZIONE

La mobilità degli elementi in tracce in ambiente idrato è stata oggetto di attenti studi sperimentali nell'ultimo decennio, con particolare riferimento a processi metamorfici di basso grado e di interazione acqua-roccia in zone di dorsale mediooceanica. Gli studi

^(*) Dipartimento di Scienze della Terra. Università degli Studi di Cagliari, Via Trentino 51, 09100 Cagliari e Istituto di Geocronologia e Geochimica Isotopica del CNR, Via Cardinale Maffi 36, 56100 Pisa.

^(**) Dipartimento di Scienze della Terra. Università degli Studi di Pisa, Via S. Maria 53, 56100 Pisa.

sperimentali si sono focalizzati su elementi di particolare interesse geognostico quali alcali, alcalino-terrosi, gruppo delle terre rare ed i cosiddetti LIL (large ion lithophile: U, Th, Ta, Zr, Hf, etc...) con risultati spesso contrastanti per un singolo elemento. Mentre vi è accordo, ad esempio, tra i vari autori occidentali sulla relativa «immobilità» dei componenti LIL dei silicati, gli autori di scuola russa definiscono gli stessi elementi «elementi idrolizzati» per la loro capacità di formare complessi in fase acquosa e quindi di mobilizzarsi negli orizzonti di alterazione dei corpi granitici (cf. ad es. Ronov e MIGDISOV, 1965). Il comportamento delle terre rare è ancora oggetto di dibattito. Opinioni correnti (HART, 1969; FREY, 1969; FREY et al., 1974; MENZIES, 1976; FLOYD, 1977), basate principalmente sull'analisi di basalti eruttati in ambiente marino ed alterati per interazione con acqua di mare, suggeriscono mobilità delle terre rare con abbassamenti proporzionali dei vari elementi della serie (HELLMANN e Henderson, 1977; Hellmann et al., 1977) o anche con frazionamenti cospicui dei vari termini (Wood et al., 1979).

Per ciò che concerne la mobilità degli alcali HART (1969) riportava arricchimenti progressivi in K, Rb e Cs in basalti sottomarini alterati per contatto con acqua di mare. A tale proposito è stato recentemente mostrato da PETRINI *et al.* (1988) che le reazioni di scambio di alcali tra acqua di mare e basalti oceanici sono dominate dagli effetti della legge di azione di massa e pertanto largamente dipendenti dai valori di concentrazione nelle varie fasi del sistema.

Una valutazione quantitativa della mobilità delle tracce in ambiente idrato presuppone una conoscenza dei parametri termochimici dei composti in tracce nelle fasi solide e della loro speciazione in fase acquosa. Nel presente lavoro vengono valutati alcuni parametri termodinamici importanti nella formulazione degli equilibri di dissoluzione quali entalpia, entropia, volume molare e funzioni del calore specifico per componenti solidi. Vengono inoltre formulate le reazioni di dissoluzione e le considerazioni che portano ad una valutazione quantitativa del concetto di «mobilità in ambiente idrato». Il calcolo di speciazione e gli esempi di applicazione del modello verranno proposti in un successivo contributo. I componenti in esame nel presente lavoro vengono denominati «componenti fittizi» in quanto formulati ai fini del calcolo termodinamico e non necessariamente presenti allo stato stabile in natura (cf. SAXENA, 1981). Raggi termochimici, energia reticolare, e entalpia di composti multipli

Le entalpie molari standard di composti semplici del tipo MX_n ($H^o_{f_{MX_n}}$) possono essere ottenute applicando la legge di Hess al ciclo di Born-Haber-Fayans:

$$H_{f_{MX_n}}^{\circ} = E_s + \frac{n}{2} D + \sum_{1 \to n} I_M - nE_x - U_L - (n+1) RT$$
 (1)

dove:

Una formulazione semplificata dell'energia reticolare U_L per i cristalli ionici (contributo coulombico e repulsivo) è data da:

$$U_{L} = \frac{N_{o} A z_{1} z_{2} e^{2}}{r_{o}} (1 - \frac{\rho}{r_{o}})$$
(2)

dove:

N = numero di Avogadro A = costante di Madelung $z_1, z_2 =$ carica del catione e dell'anione $\rho =$ esponente di repulsione di Born $r_o =$ distanza di equilibrio tra i nuclei di cariche opposte.

Il calcolo dettagliato dell'energia reticolare di composti multipli richiede una stima precisa della costante di Madelung che, nella maggior parte dei casi, non è prontamente ottenibile. Infatti, anche quando la struttura è conosciuta, può contenere ioni non sferici o essere così complessa da rendere impossibile un calcolo preciso della costante di Madelung (cf. GREENWOOD, 1970).

In questi casi U_L può essere ottenuta dalla relazione semiempirica di Kaputstinskii:

$$U'_{L} = \frac{287.2 v^{1} z_{1} z_{2}}{r_{c} + r_{a}} \left(1 - \frac{0.345}{r_{c} + r_{a}}\right)$$
(3)

dove v^1 è il numero di ioni nella formula e r_c , r_a il raggio del catione e dell'anione rispettivamente. La proprietà principale della relazione di Kaputstinskii è la mutua relazione tra la distanza reale tra le cariche (r_o) e quella stimata ($r_c + r_a$) e l'energia reticolare reale (U_L) e quella stimata (U'_L). Introducendo nell'equazione (3) le stime precise dell'energia reticolare di composti del tipo MX_n ottenute dall'entalpia calorimetrica e dal ciclo di Born-Haber-Fayans e fissando il valore di r_a , si possono ottenere sets di «raggi termochimici» r' internamente consistenti (cf. SAXENA, 1977). La proprietà di tali raggi può essere facilmente visualizzata in fig. 1 dove sono riportate le energie reticolari di complessi di diversi elementi di terza transizione vs il numero di elettroni d.

Gli elementi di terza transizione con livello d incompleto, hanno una simmetria non sferica che influenza la costante di Madelung, a prescindere dal tipo di legante anionico (cf. fig. 1 e l'equazione 2). L'effetto energetico della mancanza di simmetria è perciò evidentemente inglobato nel raggio termochimico.

Consideriamo ora composti ortosilicati del tipo M_vSiO_4 come ad esempio la forsterite Mg_2SiO_4 ; due diverse quantità di energia reticolare possono essere considerate, corrispondenti rispettivamente alla formazione della molecola Mg_2SiO_4 da ioni:

$$Mg_2SiO_4 \rightarrow 2Mg^{2+} + Si^{4+} + 4O^{2-} \equiv U_L$$
 (4)

ed alla formazione della molecola Mg_2SiO_4 dal gruppo radicale ortosilicato SiO_4^{4-} e dal catione Mg^{2+} :

$$Mg_2SiO_4 \rightarrow 2Mg^{2+} + SiO_4^{4-} \equiv U''_L$$
(5)

la differenza tra queste due energie reticolari $(a_{ortosil})$ ha un valore costante indipendentemente dal tipo di composto formato:

$$(U_L - U''_L)_{ortosil} = a_{ortosil} \approx 2973 \text{ Kcal/mole}$$
 (6)

e corrisponde all'energia reticolare necessaria per formare il gruppo SiO_4^{4-} da ioni O^{2-} e Si^{4+} :

$$\mathrm{SiO}_{4}^{4-} \rightarrow \mathrm{Si}^{4+} + 4\mathrm{O}^{2-} \equiv \mathrm{a}_{\mathrm{ortosil}} \tag{7}$$

142

Fig. 1 - Valori di energia reticolare per composti ossidi e fluoruri di elementi di transizione ad orbitali d incompleti. Sulla stessa figura è visibile il confronto tra raggi ionici in coordinazione VI con O^{2-} e raggi termochimici.

Tale quantità di energia è implicata nella definizione di raggio termochimico per il radicale SiO_4^4 :

 $r_{ortosil} = 2.4 \text{ Å}$ (cf. Greenwood, 1970)

(8)

La conoscenza dei raggi termochimici dei cationi e del gruppo

ortosilicato SiO₄⁴⁻ ci permetterebbe una stima diretta dell'entalpia allo stato standard degli ortosilicati mediante le equazioni (1, 3), ammesso che conoscessimo l'affinità elettronica del gruppo SiO₄⁴⁻, $E_{sio_{4}^{-}}$, e la sua energia di dissociazione $D_{sio_{4}^{-}}$.

In pratica, tuttavia, è più conveniente tener conto di questi termini energetici in maniera implicita, con una tecnica di regressione multipla che metta in relazione le stime precise dell'energia reticolare degli ortosilicati (attraverso l'entalpia calorimetrica ed il ciclo di Born-Haber-Fayans) con le stime semiempiriche basate su un compromesso tra l'equazione (3) e la forma estesa di questa equazione elaborata da Ladd e Lee (cf. SAXENA, 1977):

$$U_{\text{Lortosil}} = a'_{\text{ortosil}} + U''_{\text{L}} = a'_{\text{ortosil}} + \frac{b v^{1} z_{1} z_{2}}{r_{c} + r'_{\text{Si0}_{4}^{4-}}} \left(1 - \frac{0.345}{r'_{c} + r'_{\text{Si0}_{4}^{4-}}}\right) + \frac{c}{(r'_{c} + r'_{\text{Si0}_{4}^{4-}})^{6}} \left(1 - \frac{6 \times 0.345}{r'_{c} + r'_{\text{Si0}_{4}^{4-}}}\right) + \frac{d}{(r'_{c} + r'_{\text{Si0}_{4}^{4-}})^{8}} \left(1 - \frac{8 \times 0.345}{r'_{c} + r'_{\text{Si0}_{4}^{4-}}}\right) (9)$$

Il primo termine a destra nell'equazione (9) è in relazione con il valore $a_{ortosil}$ discusso in precedenza (notare che a'_{ortosil} $\neq a_{ortosil}$); il secondo termine è simile alla parte destra dell'equazione (3), mentre il terzo ed il quarto termine tengono conto rispettivamente dell'energia di attrazione di London e delle interazioni di quadrupolo.

Sulla base di una regressione multipla operata su ortosilicati di cationi bivalenti sono stati ottenuti i seguenti valori:

Sebbene sia ovvio che le costanti b, c e d possono non avere un preciso significato fisico, è interessante notare come il termine c, che tiene conto degli effetti della simmetria non sferica, sia uguale a zero; ciò è consistente con il fatto che gli effetti di simmetria sono già compresi nella definizione di raggio termochimico.

Le stime di entalpia ottenute mediante l'equazione (9) ed il ciclo di Born-Haber-Fayans hanno una precisione media di \pm 2 Kcal/mole rispetto ai valori sperimentali e possono essere estese a qualsiasi composto ortosilicato a prescindere dalla carica reale del catione considerato.

Lo stesso approccio descritto sopra per la determinazione dell'energia reticolare degli ortosilicati può essere esteso ai metasilica-

ti, tuttavia i due sets di dati devono essere internamente consistenti. In pratica ciò si ottiene derivando un raggio termochimico per il gruppo radicale SiO₃²⁻ che sia consistente con il raggio termochimico del gruppo SiO₄⁴⁻. A questo scopo è sufficiente considerare che negli ortosilicati come l'olivina il silicio forma tetraedri isolati con quattro atomi di ossigeno legati singolarmente. Nei metasilicati, come MgSiO₃, due degli ossigeni in ciascun tetraedro sono legati ad altri atomi di silicio in una struttura a ponte. L'effetto contropolarizzante delle cariche opposte modifica perciò l'energia di due dei quattro legami Si-O. Nel quarzo tutti gli atomi di ossigeno sono legati e sono presenti ulteriori modificazioni energetiche dei legami. L'evoluzione ortosilicato-metasilicato-guarzo può essere considerata come una sequenza di successive reazioni di polimerizzazione che può essere ridotta ad una relazione di base considerando tre diverse forme di ossigeno: ioni ossigeno legati singolarmente (O⁻), con legame doppio (O°), e liberi (O²⁻) (cf. TOOP e SAMIS, 1962 a, b):

$$20^{-} \rightarrow 0^{2-} + 0^{\circ} \tag{10}$$

Due successive polimerizzazioni, tipo quelle indicate nella (10), sono necessarie per passare da un tipo di struttura a tetraedri isolati a una struttura tipo quarzo dove tutti gli ossigeni presentano legame doppio. Questo semplice ragionamento dovrebbe consentire di fare valutazioni empiriche sulla diminuzione dell'energia reticolare che accompagna la transizione ortosilicato-metasilicato (conosciamo l'energia reticolare di SiO₂ dalla reazione: SiO₂ \rightarrow Si⁴⁺ + 2O²⁻). L'energia di tale transizione è tuttavia già disponibile nella forma di energia di sito degli ioni ossigeno nelle diverse strutture silicatiche (cf. OHASHI, 1976). Sulla base di tali valori si può dedurre che la transizione di legame ortosilicato-metasilicato necessita:

 $\Delta a_{\text{metasil-ortosil}} = 2 \times (1420 - 1260) + 2 \times (1220 - 1280) = 200$ Kcal/ mole (11)

e la transizione dal legame tipo ortosilicato a quello tipo quarzo:

 $\Delta a_{SiO_2-ortosil} = 4 \times 1420 - 2 \times 1260 - 2 \times 1280 = 600 \text{ Kcal/}$ mole (12)

S° ° 29°°° 1 30.0!! 46.8+ 24.81* ** 29.72*** ** 31.85*** ** 22.75***	V° 50.071° 53.63* 54.16*** 59.89*** 43.79***	A 32.82°° 38.96+ 16.548 59.03* 21.50* 35.908***	B × 10 ³ 16.33°°	$C \times 10^{-5}$ D	E	trans. °K
<pre> 29°°° 30.0!! 46.8+ 46.8+ 24.81* ** 29.72*** ** 31.85*** ** 22.75*** ** 27.49** </pre>	50.071° 53.63* 54.16*** 43.79***	32.82°° 38.96+ 16.548 59.03* 21.50* 35.908***	16.33°°			
i 30.0!! 46.8+ 24.81* ** 29.72*** ** 31.85*** ** 22.75***	53.63* 54.16*** 59.89*** 43.79***	38.96+ 16.548 59.03* 21.50* 35.908*** 29.48***		-2.35°°		
46.8+ 24.81* ** 29.72*** ** 31.85*** ** 22.75**	53.63* 54.16*** 59.89*** 43.79***	38.96+ 16.548 59.03* 21.50* 35.908*** 29.48***				
24.81* ** 29.72*** ** 31.85*** ** 22.75***	53.63* 54.16*** 59.89*** 43.79***	16.548 59.03* 21.50* 35.908*** 29.48***	17.74^{+}	3.978+		
24.81* ** 29.72*** ** 31.85*** ** 22.75***	53.63* 54.16*** 59.89*** 43.79***	59.03* 21.50* 35.908*** 29.48***	14.528		73.43	
** 29.72*** ** 31.85*** ** 22.75*** * 22.49**	54.16*** 59.89*** 43.79***	21.50* 35.908*** 29.48***		3.08198*	491.8*	1300
** 29.72*** ** 31.85*** ** 22.75*** * 22.49**	54.16*** 59.89*** 43.79***	35.908*** 29.48***	18.93*	-7.328***		1600
** 31.85*** ** 22.75*** * 22.49**	59.89*** 43.79***	29.48***	6.458***	5.32***		
** 22.75*** * 22.49**	43.79***		17.36***			
* 22.49**		35.81***	6.54***			
		20.879**	20.834**		201.625**	
28.80*	59.11*	31.68*	12.5*	-4.55*		
40	59.339°	31.248	9.758	-7.641	112.82	
43.5+	109.52	36.7+	10.28^{+}	6.67+		
+ 39.0+	48.61*	33.44+	12.08^{+}	4.46+		
* 37.26**		62.447**	3.293**	6.70**	530.043**	
** 35.45***	46.39***	36.51***	9.36***			
34.7+				6.5		
45	59.37°	27.164	10.446	-6.5	185.105	
° 37.9°°	44.59°	37.62°°	5.2700	6.3800		
* 34.08**		82.194** -	-24.044**	9.1 10exp-6**758.843**		•
28.80* 40 43.5+ 39.0+ 37.26** 34.7+ 45 45 34.08** 34.08**	59.11* 59.339° 109.52 48.61* 46.39*** 59.37° 44.59°	35.81*** 35.879** 31.68* 31.248 36.7+ 36.7+ 36.2447** 36.51*** 36.51*** 37.62°°	6.54*** 20.834** 12.5* 9.758 10.28+ 12.08+ -3.293** 9.36*** 10.446 5.27°°	- 6	-8.52*** -8.64**5.3 E-6** -4.55* -7.641 6.67+ 4.46+ -6.70** -6.70** -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5	-8.52*** -8.64**5.3 E-6** 201.625** -4.55* 112.82 6.67+ 4.46+ -6.70** -530.043** -6.5 -6.5 185.105 -6.3 -6.3 -6.38°° 185.105

Segue: TABELLA	1								
Composto	-H _f	S°	٥Λ	A	$B \times 10^3$	$C \times 10^{-5}$	D	ш	trans. °K
Ni2	335.800	26.300	42.56	39.000	4.7200		2.1 E-6		
Zn2	391.14*	31.4*	52.42*	-1.893	26.539	-16.772	-4.2 E-6	742.897	
Cd2	357	34	47.15	23.938	11.307	-6.312		185.105	
Hg2	272	45	63.27	39.804	8.598	-6.312		-65.899	
Pb2-α	326.54+	45.4+	79.74	26.63+	20.7+				893
Pb2-B				34.12+	10.9 +				1016
Sc4/3□2/3	465	24	44.18	35.637	5.201	- 5.632			
La4/3□2/3	481	36	67.02	25.515	8.832	— 8.105		147.791	
Ce4/3 2/3	476	40	64.5	25.457	10.383	— 9.029		185.105	
Pr4/3 2/3	478	41	62.63	26.699	10.471	- 6.417		120.389	
Nd4/3□2/3	476	41	61.08	23.08	11.892	- 8.206	×	185.105	
Sm4/3□2/3	475	39	58.55	25.099	10.42	— 9.312		185.105	
Eu4/3□2/3	450	38	57.64	28.064	7.147	-10.749		185.105	
Gd4/3□2/3	474	39	56.55	23.639	9.311	- 7.085		162.239	
Tb4/3□2/3	475	38	55.45	18.762	12.298	— 9.563		297.599	
Dy4/3□2/3	479	37	54.38	10.731	13.075	-13.981		505.755	
Ho4/3□2/3	479	38	53.41	16.452	10.806	-12.271		372.039	
Er4/3□2/3	478	38	52.54	30.695	7.158	- 3.764		10.519	
Tm4/3□2/3	476	35	51.76	25.452	7.596	— 8.946		185.105	
Yb4/3□2/3	464	34	51.06	26.33	6.825	— 9.488		185.105	
Lu4/3□2/3	469	30	50.44	28.069	7.147	— 9.108		100.03	
Y4/3□2/3	486	29	53.28	23.928	8.517	— 9.257		185.105	
Ti4/3□2/3	385	24	41.68	28.317	7.67	-13.782		180.799	
V4/3□2/3	333	28	40.58	13.878	13.712	-12.482		400.369	
Cr4/3 2/3	310	25	39.75	23.602	8.66	- 8.61		184.563	

MOBILITÀ DEI COMPONENTI IN TRACCE DEI SILICATI ECC.

147

Segue: TABELLA 1								
Composto	-H _f	S°	ν٥	A	$B \times 10^3$	C × 10 ⁻⁵ D	ш	trans. °K
LiSc	250	24	44.43	60.605	0.601	0.762	578.924	
LiLa	322	30	53.88	53.013	3.324	-1.092		
LiCe	307	32	52.96	52.97	4.488	-1.785		
LiPr	308	33	52.27	53.901	4.553	0.174	418.009	
LiNd	305	33	51.69	51.178	5.619	-1.168		
LiSm	296	32	50.71	52.701	4.515	-1.197		
LiEu	284	32	50.28	54.925	2.06	-3.075		
LiGd	295	32	49.92	51.607	3.683	-0.327		
LiTb	285	32	49.47	47.949	5.923	-2.186	-285.102	
LiDy	297	32	49.04	41.926	6.507	5.499	-128.984	
LiHo	292	33	48.64	46.216	4.804	-4.217	-229.271	
LiEr	284	33	48.27	56.898	2.068	2.164	-500.411	
LiTm	281	30	47.94	52.967	2.397	-1.723		
LiYb	272	30	47.64	53.625	1.819	-2.129		
LiLu	268	27	47.37	54.929	2.06	-1.845	433.278	
LiY	303	26	48.58	51.823	3.088	-1.956		
LiTi	159	24	43.11	55.115	2.453	5.35	-372.701	
LiV	111	26	42.49	44.286	6.983	4.374	208.023	
LiCr	77	24	41.99	51.579	3.195	-1.471		
Ce1□1	371	25	47.67	23.829	8.509	8.056	134.938	
Th101	425	25	61.51	21.698	8.953	-8.829	185.105	
Zr1□1	346	22	43.74	26.316	7.147	-8.256	80.237	
Hf1□1	381	24	43.3	27.483	7.647	-7.37	57.247	
U1 🗆 1	454	32	59.03	18.609	10.985	-10.775	273.272	
Li4/3Ce2/3	93	25	45.62	-0.974		48.444	821.259	
Li4/3Th2/3	168	26	49.19	-1.684		47.366	837.982	

.

148

OTTONELLO G. - TADDEUCCI G.

Composto	-H ^e	S°	٥Λ	A	$B \times 10^3$	$C \times 10^{-5}$	D	E tr	rans. °	¥
Li4/3Zr2/3	290	24	44.35	-0.145		48.165	803	.026		
_i4/3Hf2/3	96	25	44.2	0.244	. N	49.401	795	.362		
Li4/3U2/3	351	28	48.62	-2.714	44.652		867	.371		
Ce		24	44.97	54.145	5.635	0.558	596	.718		
Гh		25	48.40+++	52.014	6.079	-0.215	646	.886		
Zr	483.7+	20.083+	39.26*	28.353+	11.45+	-7.115+				
JE		22	38.97	57.8	4.774	1.124	519	.027		
U		28	46.12+++	48.925	8.11	-2.161	735	.052		

Segue: TABELLA 1

+ - Barin and Knacke (1973)

+++- Speer (1980)

* - Robie et al. (1978)

** - Robie et al. (1982) *** Ualzoon et al. (10

* - Helgeson et al. (1978)
- Naumov et al. (1970)

- Karapet'yants and Karapet'yants (1970)

=:

cartelle ASTM

•• - Barin, Knacke and Kubaschewski (1977)

I valori privi di simboli sono stati calcolati nel presente lavoro.

Sebbene questi valori siano fortemente approssimati sono consistenti con altri tipi di considerazioni: si può, per esempio, considerare la struttura tipo quarzo come un caso limite di ortosilicato in cui il catione legato al tetraedro SiO_4^{4-} ha raggio zero. Sostituendo zero a r_c nell'equazione (3) si ottiene:

 $\Delta a_{ortosil-SiO_2} = 678$ Kcal/mole

questo valore è abbastanza consistente con il valore trovato in precedenza.

La conoscenza del valore di $\Delta a_{metasil-ortosil}$ ci permette di derivare il raggio termochimico del gruppo radicale SiO₃²⁻ (r'_{SiO₃}) attraverso la considerazione:

$$U'_{L metasil} = U_{L metasil} - (a_{ortosil} + \Delta a_{metasil-ortosil})$$
(13)

Il valore risultante è $r'_{sio_3^2} = 1.57$ Å.

La stessa tecnica di regressione multipla adottata per gli ortosilicati può essere applicata ai metasilicati per derivare una relazione generale per l'energia reticolare U_L metasil:

$$U_{L \text{ metasil}} = a'_{\text{metasil}} + \frac{b \nu^{1} z_{1} z_{2}}{r_{c}' + r_{\text{SiO}_{2}^{-}}'} \left(1 - \frac{0.345}{r_{c}' + r_{\text{SiO}_{2}^{-}}'}\right) + \dots (14)$$

I valori ottenuti delle costanti a'_{metasil}, b, c e d sono i seguenti:

 $\begin{array}{rll} a'_{metasil} &=& 35.767 \ \pm \ 1.573; & b \ = \ 303.565 \ \pm \ 6.642; \\ c \ = \ 0 & d \ = \ 3.1932 \ \times \ 10^4 \ \pm \ 6.323 \ \times \ 10^2. \end{array}$

Di nuovo la costante c ha valore zero, consistente con la definizione di raggio termochimico del catione.

Valori di entalpia di componenti fittizi ortosilicati e metasilicati ottenuti con il metodo sopra descritto sono visibili in tabella 1 e 2. Nelle figure 2 e 3 è visualizzato il confronto tra i valori H_f° calcolati e i dati sperimentali esistenti.

ENTROPIA DI COMPONENTI FITTIZI

Come discusso da HELGESON *et al.* (1978) le stime migliori dell'entropia molare si ottengono scrivendo reazioni reversibili del tipo:

$$M_{\nu}X + \nu M^{i}O \rightleftharpoons M_{\nu}X + \nu MO$$
(15)

dove $M_{\nu}X$ e $M_{\nu}^{i}X$ sono solidi insostrutturali o quasi isostrutturali e le entropie molari di $M_{\nu}O$, $M^{i}O$ ed MO sono note. Sono valide le seguenti relazioni:

$$S_s^{\circ} = \Delta S_{reazione}^{\circ} + S_{M_v X}^{\circ} = S_{M_v X}^{\circ} + \nu S_{MO}^{\circ} - \nu S_{MO}^{\circ}$$
(16)

$$V_{s}^{o} = \Delta V_{reazione} + V_{M,X}^{o} = V_{M,X}^{o} + \nu V_{MO}^{o} - \nu V_{MiO}^{o}$$
(17)

dove X indica il radicale anionico comune, v il numero di moli di ossido nel composto M,X, M,X il composto del quale si vuole stimare l'entropia molare standard S° a 25°C e 1 bar e V° i volumi molari standard alle stesse condizioni P e T. Indicando con S^o_s e V^o_s i termini a sinistra rispettivamente nell'equazione (16) e (17) si può calcolare l'entropia molare standard S^o_{M,X} del composto M,X dalla relazione:

$$S^{\circ}_{M^{i}_{v}X} = \frac{S^{\circ}_{s} (V^{\circ}_{s} + V^{\circ}_{M^{i}_{v}X})}{2 V^{\circ}_{s}}$$
(18)

(cf. HELGESON et al., 1978, equazione 62).

Per solidi non isostruttutali si può ottenere una stima meno accurata con il metodo proposto da Fyfe *el al.* (1958):

$$S^{\circ}_{M^{i}_{\nu}X} = S^{\circ}_{\Sigma} + K(V^{\circ}_{M^{i}_{\nu}X} - V^{\circ}_{\Sigma})$$
⁽¹⁹⁾

dove K è una costante (0.6 per la maggior parte dei silicati) e:

$$S_{\Sigma}^{\circ} = \sum_{j} v_{j,i} S^{\circ}_{M_{v}^{i}O}$$
⁽²⁰⁾

$$V_{\Sigma}^{o} = \sum_{j} v_{j,i} V_{M_{v}^{i}0}^{o}$$
(21)

con v_i uguale al numero di moli per unità di formula dell'ossido j-esimo in una mole del minerale i-esimo, $V^{\circ}{}_{j}$ uguale al volume molare standard dell'ossido j-esimo puro e S^{\circ}{}_{j}l'entropia molare standard dell'ossido j-esimo puro.

TABELLA 2 - A	Metasilicati								
Composto	-He	S°	٥Λ	A	$B \times 10^3$	$C \times 10^{-5}$	D	ш	trans. °K
Li2	394.24+	19.19+		30.237+	6.746+	-7.299+			
Na2	373.19+	27.19+		31.14+	9.6+	6.47+			
K2	357+	33+		35.23+	6.62+				
Rb2	365.100	38.500		29.56°°	17.76°°	-4.4400			
Cs2	365.6!!								
Li1/2Al1/2	364.9*	15.45*	29.185*	50.3*	2.87*	2.28*		57*	
Na1/2Al1/2	357.339***	20.95***	44.55***	21.045***	12.07***	4.44***			
K1/2Al1/2-α	363.125*	23.925*	44.195*	17.735*	16.045*	2.585*			955
K1/2Al1/2-β				23.475*	3.305*	14.66*			1800
Rb1/2Al1/2		12	48.065°	21.656	1.275	1.102		319.786	
Cs1/2Al1/2		18	51.12	21.656	1.275	1.102		319.786	
Mg-α	369.686***	16.2***	31.276***	24.55***	4.74***	-6.28***			903
Mg-B				28.765***					1258
Mg-7				29.26***					1800
Ca	389.81***	19.60***	39.93***	26.64***	3.60***	6.52***			
Sr	382	24	45.024	27.365	3.863	7.769		-19.908	
Ba	387.3+	26.8+	50.695+	23.96+	9.24+	4.684+			
Mn	303.3+	21.3+	35.16+	26.42+	3.88+	-6.16^{+}			
Fe-α	285.625***	22.6***	32.952***	26.49***	5.07***	5.55***			413
Fe-ß				21.0***	9.0***				1400
Eu	382	23	45.4	25.32	4.207	8.34		16.234	
Co	268!!	22	34.34	6.778	9.598	-1.523		477.921	
Ni	268	19	33.84	24.857	4.855	8.433		16.234	
Cu	245!!								
V	326	19	35.22	27.428	5.245	8.001		-32.506	
Zn	294.6+	21.4^{+}	34.49	16.8^{+}	11.6^{+}				
cd	290	27	38.57	23.71	4.637	8.433		16.234	

152

OTTONELLO G. - TADDEUCCI G.

Segue: TABELL	A 2								
Composto	-H ^e	S°	۰V	A	$B \times 10^3$	$C \times 10^{-5}$	D	щ	trans. °K
Hg	225!!	14	40.44	31.643	3.283	8.433		109.268	
Pb	274.17+	26.52+	67.29	18.5+					
Вe	284	15	31.00	35 287	0 110	707	7 2 E_7		
Sn	302	12	46.26	23.61	6.057	8.433		16.234	
Sc2/3□1/3	382	18	34.18	29.56	1.584	8.773		-123.401	
La2/3 🗆 1/3	383	22	58.14	24.498	3.4	7.537		2.422	
Ce2/3 🗆 1/3	382	23	55.95	24.47	4.176	7.075		16.234	
Pr2/3 11/3	383	24	53.48	25.09	4.219	8.381		-16.124	
Nd2/3 🗆 1/3	383	21	51.85	23.28	4.93	7.487		16.234	
Sm2/3 11/3	383	21	49.17	24.29	4.194	6.933		16.234	
Eu2/3 [] 1/3	370	25	48.02	25.773	2.557	6.215		16.234	
Gd2/3□1/3	382	25	47.05	23.561	3.639	8.047		4.801	
Tb2/3 🗆 1/3	384	25	45.88	21.122	5.133	6.808		72.481	
Dy2/3□1/3	386	26	44.75	17.107	5.522	4.599		176.559	
Ho2/3□1/3	386	26	43.73	19.967	4.387	5.454		109.701	
Er2/3 11/3	386	24	42.8	27.088	2.563	9.707		-71.059	
$Tm2/3 \square 1/3$	385	21	41.98	24.467	2.782	7.117		16.234	
Yb2/3□1/3	379	20	41.24	24.906	2.396	6.846		16.234	
Lu2/3 🗆 1/3	383	19	40.58	25.775	2.557	7.035		-26.303	
Sb2/3□1/3	288	20	35.45	14.06	2.557	8.433		16.234	
Y2/3□1/3	389	20	43.58	23.705	3.242	6.961		16.234	
Ti2/3 11/3	342	19	31.3	25.9	2.819	4.698		14.081	
V2/3□1/3	314	21	30.14	18.68	5.84	5.349		123.866	
Cr2/3□1/3	300	30	29.26	23.142	3.314	7.285		15.963	
C/1-3C/1:1	020	10	24 10	C7 554	2 641	2 671		616 AEO	
	017	10	01.70		140.0	1/0.0			
Li1/2La1/2	315	23	44.2	48.758	-2.28	2.744		-525.725	
Li1/2Ce1/2	308	24	43.4	48.737	—1.698	2.397		-511.733	

Segue: TABELLA 2	0								
Composto	-H _f	S°	٥Λ	A	$B \times 10^3$	$C \times 10^{-5}$	D	щ	trans. °K
Li1/2Pr1/2	308	24	42.49	49.202	-1.665	3.377	,	-536.001	
Li1/2Nd1/2	307	24	41.87	47.845	-1.132	2.706	ļ	-511.733	
Li1/2Sm1/2	302	24	40.84	48.602	-1.684	2.291		-511.733	
Li1/2Eu1/2	296	23	40.39	49.714	2.912	1.752	ļ	-511.733	
Li1/2Gd1/2	302	23	40	48.055	-2.1	3.126	·	-520.308	
Li1/2Tb1/2	296	23	39.53	46.226	-0.98	2.197	,	-469.548	~
Li1/2Dy1/2	302	23	39.07	43.215	-0.688	0.54	·	-391.489	
Li1/2Ho1/2	300	23	38.65	45.36	-1.539	1.181		-441.632	
Li1/2Er1/2	296	23	38.26	50.701	2.907	4.371	·	-577.202	
Li1/2Tm1/2	294	22	37.91	48.735	2.743	2.428		-511.733	
Li1/2Yb1/2	289	22	37.59	49.064	-3.032	2.225		-511.733	
Li1/2Lu1/2	287	20	37.3	49.716	-2.912	2.367		-543.636	
Li1/2Sb1/2	212	20	34.94	40.93	-2.912	3.416		-511.733	
Li1/2Y1/2	305	20	38.59	48.163	2.398	2.312	·	-511.733	
Li1/2Ti1/2	230	18	32.79	49.809	-2.715	0.615		-513.348	
Li1/2V1/2	205	19	32.14	44.395	0.45	1.102		-431.009	
Li1/2Cr1/2	187	18	31.61	48.041	—2.344	2.554	T.	-511.937	
Na1/2Sc1/2	238	18	35.3	26.302	4.937	4.547	ě.	-45.689	
Na1/2La1/2	279	22	42.41	22.506	6.299	5.474		45.044	
Na1/2Ce1/2	271	24	41.81	22.485	6.881	-5.82		59.037	
Na1/2Pr1/2	271	24	41.12	22.95	6.914	-4.841		34.768	
Na1/2Nd1/2	269	24	40.65	21.593	7.446	-5.512		59.037	
Na1/2Sm1/2	265	23	39.86	22.35	6.895	-5.926		59.037	
Na1/2Eu1/2	259	23	39.51	23.462	5.667	6.465		59.037	
Na1/2Gd1/2	264	23	39.21	21.803	6.479	-5.091		50.462	
Na1/2As1/2	112	19	31.98	14.678	5.667	-4.802		59.037	
Na1/2Ga1/2	134	18	32.65	24.583	5.52	-5.11		-10.209	
Na1/2Y1/2	268	20	38.12	21.911	6.181	-5.906		59.037	
Na1/2V1/2	166	19	33	18.142	8.129	-7.115		139.761	

154

OTTONELLO G. - TADDEUCCI G.

Segue: TABELLA	1 2							
Composto	-H ^e	S°	٥Λ	A	$B \times 10^3$	$C \times 10^{-5}$	D	н
Na1/2Cr1/2	147	18	32.46	21.789	6.234	-5.663		58.833
Ce1/2□1/2	365	19	37.64	23.665	3.238	7.562		
Wo1/2□1/2	293		30.52	47.009	-12.155	11.375		-426.38
Th1/2□1/2	386	19	52.3	22.59	3.46	7.175		16.234
Zr1/2□1/2	359	17	33.48	24.899	2.557	7.461		-36.2
Hf1/2□1/2	371	18	33.02	25.483	2.807	7.905		-47.695
U1/2□1/2	381	20	49.68	21.046	4.476	6.202		60.318
V1/2□1/2	274	17	28.44	21.54	2.557	8.433		16.234
Ge1/2□1/2	245	19	27	29.198	1.343	9.202		-146.337
Mo1/2□1/2	257	18	30.52	17.304	6.53	5.959		103.17
Li2/3Ce1/3	186	21	35.45	32.774	6.652	-5.231		-72.358
Li2/3Wo1/3	94	20	33.02	48.343	-3.61	-2.689		-350.713
Li2/3Th1/2	224	22	39.23	32.063	6.78	5.489		55.636
Li2/3Zr1/2	153	20	34.11	33.603	6.198	5.298		90.592
Li2/3Hf1/3	187	20	33.95	33.992	6.365	5.003		98.256
Li2/3U1/3	316	23	38.63	31.034	7.477	-6.138		-26.247
Li2/3V1/3	349	20	32.13	31.364	6.198	4.65		-55.636
Li2/3Ge1/3	98	19	31.44	36.468	5.389	-4.138		-164.017
Li2/3Mo1/3	222	20	33.02	28.539	8.847	6.3		2.321

trans. °K

dubbi	
valori	
11	
c .	
SiO ₃ -;	
comune	
anionico	
radicale	

43?

Na2/33V1/3

Na2/3U1/3

Na2/3Ge1/3

6.22 54.442 37.69 35.53 35.53 40.95 36.51 36.36 40.43 34.73 34.73 34.09 35.53 31? Na2/3Mo1/3

MOBILITÀ DEI COMPONENTI IN TRACCE DEI SILICATI ECC.

155

506.189 578.197 548.808 440.427

2.8475.389 2.5892.783.0751.943.4283.941.768

4.173 3.571 3.738 4.85 3.571 2.762

58.676 74.246 57.966 59.505 59.894 56.936 57.266 62.371

135 42? 174 101 101 136 274 274

Na2/3Wo1/3

Na2/3Ce1/3

Na2/3Th1/3

Na2/3Zr1/3 Na2/3Hf1/3 606.766

532.086 253.732 548.808 513.852

> 4.025 -6.237

Fig. 2 - Confronto tra valori calcolati di entalpia di formazione dagli elementi a 298.15°K, 1 bar e valori ottenuti dal calcolo di energia reticolare in base alla relazione (9) ed al ciclo termochimico Born-Haber-Fayans.

L'equazione (18) permette di ottenere delle stime con una incertezza di $\sim 1\%$ dell'entropia molare standard calorimetrica della maggior parte dei silicati (cf. tab. 1 in HELGESON *et al.*, 1978) ammesso che non sia applicata a composti contenenti ferro ferroso; mentre stime meno precise sono generalmente ottenute attraverso la (19).

In tabella 3 sono mostrate alcune reazioni di riferimento utilizzate per il calcolo dell'entropia molare standard di componenti fittizi. I componenti di riferimento sono scelti sulla base di caratteri isostrutturali e la preferenza è stata data a quelli che costituiscono una parte preponderante della soluzione solida (i.e. Mg_2SiO_4 è sta-

Fig. 3 - Confronto tra valori calcolati di entalpia di formazione dagli elementi a 298.15°K, 1 bar e valori ottenuti dal calcolo di energia reticolare in base alla relazione (14) ed al ciclo termochimico Born-Haber-Fayans.

to scelto come componente di riferimento per componenti fittizi isostrutturali dell'olivina).

Come si può vedere in tabella 3 si possono considerare diverse reazioni reversibili per componenti che presentano un bilancio di carica con difetti reticolari. Per esempio il componente fittizio $Sc_{4/3}\Box_{2/3}SiO_4$, isostrutturale nei confronti dell'olivina, presenta una vacanza (\Box) di 2/3 per unità di formula e la sua entropia molare standard può, essere calcolata utilizzando due diverse reazioni reversibili:

$$Sc_{4/3} \Box_{2/3} SiO_4 \equiv Sc_{4/3} SiO_4$$
 (22-1)

$$Sc_{4/3}SiO_4 + 2MgO \rightleftharpoons Mg_2SiO_4 + 2/3 Sc_2O_3$$
 (22-2)

$$\mathrm{Sc}_{4/3}\Box_{2/3}\mathrm{SiO}_4 \equiv \mathrm{Sc}_{4/3}\mathrm{SiO}_4 \tag{23-1}$$

$$Sc_{4/3}SiO_4 + 4/3 MgO \rightleftharpoons 2/3 Mg_2SiO_4 + 2/3 Sc_2O_3 + 1/3 SiO_2$$
 (23-2)

TABELLA 3 - Reazioni di riferimento per la stima di S_i°e dei coefficienti della funzione di Mayer-Kelley

Struttura	Reazione
Olivina	$Co_2SiO_4 + 2MgO \rightleftharpoons Mg_2SiO_4 + 2CoO$
»	$Sc_{4/3}\Box_{2/3}SiO_4 + 2MgO \rightleftharpoons Mg_2SiO_4 + 2/3Sc_2O_3$
»	$Sc_{4/3}\Box_{2/3}SiO_4 + 4/3MgO \approx 2/3Mg_2SiO_4 + 1/3SiO_2 + 2/3Sc_2O_3$
»	$LiScSiO_4 + 2MgO \rightleftharpoons Mg_2SiO_4 + 1/2Li_2O + 1/2Sc_2O_3$
»	$NaScSiO_4 + 2MgO \rightleftharpoons Mg_2SiO_4 + 1/2Na_2O + 1/2Sc_2O_3$
»	$Li_{4/3}Th_{2/3}SiO_4 + 2MgO \rightleftharpoons Mg_2SiO_4 + 2/3Li_2O + 2/3ThO_2$
»	$Na_{4/3}Th_{2/3}SiO_4 + 2MgO \rightleftharpoons Mg_2SiO_4 + 2/3Na_2O + 2/3ThO_2$
Zircone	$ThSiO_4 + ZrO_2 \rightleftharpoons ZrSiO_4 + ThO_2$
Na ₄ SiO ₄	$Cs_4SiO_4 + 2Na_2O \rightleftharpoons Na_4SiO_4 + 2Cs_2O$
Nefelina	$CsAlSiO_4 + 1/2Na_2O \rightleftharpoons NaAlSiO_4 + 1/2Cs_2O$
Clinopirosseno	$CoSiO_3 + CaO \rightleftharpoons CaSiO_3 + CaO$
	$\mathrm{Li}_{1/2}\mathrm{Sc}_{1/2}\mathrm{SiO}_3 + \frac{1}{2}\mathrm{Al}_2\mathrm{O}_3 \rightleftharpoons \mathrm{Li}_{1/2}\mathrm{Al}_{1/2}\mathrm{SiO}_3 + \frac{1}{2}\mathrm{Sc}_2\mathrm{O}_3$
	$Na_{1/2}Sc_{1/2}SiO_3 + \frac{1}{4}Li_2O + \frac{1}{4}Al_2O_3 \rightleftharpoons Li_{1/2}Al_{1/2}SiO_3$
	$+ \frac{1}{4}Sc_2O_3 + \frac{1}{4}Na_2O$

La (22-1) e la (23-1) indicano come, in prima approssimazione, consideriamo l'entropia molare del componente $Sc_{4/3}\Box_{2/3}SiO_4$, che comprende le vacanze in forma esplicita, uguale a quella di $Sc_{4/3}SiO_4$ (notare che, come stabilito in precedenza, il volume molare di $Sc_{4/3}SiO_4$ è stato calcolato per analogia con la struttura dell'olivina e quindi include già il volume occupato dai difetti stechiometrici). Dal punto di vista del bilancio di massa le relazioni (22-2) e (23-2) sono identiche, tuttavia la (23-2) implica uno spostamento di silice più strettamente somigliante al processo di «incorporamento sottrattivo» che opera in realtà nelle soluzioni solide tipo olivina durante l'incorporamento di ortosilicati trivalenti (vedi oltre). La scelta tra la (22-2) e la (23-2) è una questione puramente di gusto. Si considera la (23-2) più appropriata anche se le energie connesse con il processo di creazione del difetto non sono contenute nella definizione dell'energia di interazione della soluzione solida; mentre la (22-2) è più appropriata se intendiamo incorporare parte di queste energie nei valori di entropia e entalpia molare allo stato standard.

L'esistenza di vacanze già definite su base stechiometrica nel componente fittizio condiziona i valori di entropia configurazionale. Ciò è vero anche per i componenti dove il bilancio di carica è mantenuto dall'accoppiamento di ioni ad alta carica con ioni a bassa carica, come nel caso di LiScSiO₄ o Na_{0.5}Sc_{0.5}SiO₃. In questi casi le stime dell'aumento di entropia possono essere fatte attraverso la relazione di Boltzmann tra l'entropia e la probabilità (P):

$$\Delta S = K \ln P \tag{24}$$

Se abbiamo n difetti in una mole di composto con N siti, allora:

$$\Delta S = K \ln \frac{N!}{(N-n)! n!}$$
(25)

con l'approssimazione di Stirling:

$$\ln x! \simeq x \ln x - x + 1/2 \ln(2\pi x)$$
 (26)

e l'ulteriore semplificazione:

$$\ln x! \simeq x \ln x$$
 (27)

l'equazione (24) diventa:

$$\Delta S = K [N \ln N - (N-n) \ln(N-n) - n \ln n]$$
(28)

Consideriamo il componente fittizio $Sc_{4/3}\Box_{2/3}SiO_4$. Per una mole di composto avremo n = \Box = 2/3 N_o difetti reticolari e N = 2N_o siti; allora la relazione (28) diventa:

 $\Delta S = K [2N_{o} \ln(2N_{o}) - 4/3 N_{o} \ln(4/3 N_{o}) - 2/3 N_{o} \ln(2/3 N_{o}) = 2.53 \text{ cal/mole }^{\circ}K$ (29)

Per un composto del tipo Ti□SiO₄:

$$\Delta S = K [2N_o \ln(2N_o) - N_o \ln N_o - N_o \ln N_o] = 2.65 \text{ cal/mole }^{\circ}K(30)$$

La relazione (28) può essere generalizzata per qualsiasi elemento di carica z_1 in un composto in cui il radicale polianionico ha carica z_2 e il reticolo ha due siti cationici nel caso di riferimento:

$$\Delta S = R \left[2 \ln (2N_o) - z_1/z_2 \ln (z_1/z_2 N_o) - (2 - z_2/z_1) \ln (2N_o - z_2/z_1 N_o) \right]$$
(31)

dove R è la costante universale dei gas e N_o il numero di Avogadro (6.023 \times 10^{23}).

Stime relative a composti ferrosi mediante la (18) o anche la (19) forniscono valori che sono di diverse calorie più alti di quelli calorimetrici. Secondo Helgeson et al. (1978) la differenza è di circa 2 calorie per mole di FeO nel composto. La diminuzione dell'entropia molare di tale quantità è dovuta, secondo Burns e Fyfe (1967) e Burns (1970), alla simmetria non sferica degli ioni Fe²⁺ in FeO e negli altri composti. Più precisamente le differenze di entropia sono dovute alle differenti configurazioni elettroniche degli orbitali d nelle diverse simmetrie di sito (cf. equazioni 4, 5, 6 e 7 in Woop, 1980). Per tener conto di tali contributi sono stati introdotti nell'equazione (18), applicata a ioni con simmetria non sferica, dei fattori di correzione. Questi fattori di correzione sono espressi come differenze volumetriche tra i volumi molari sperimentali e i «volumi termochimici» ottenuti introducendo nell'equazione (40) i raggi termochimici r'. Il valore ottenuto ΔV^* è poi introdotto nell'equazione (18) nel seguente modo:

$$S^{\circ}_{M^{i}_{v}X} = \frac{S^{\circ}_{s} (V^{\circ}_{s} + V^{\circ}_{M^{i}_{v}X} + \nu\Delta V^{*})}{2 (V^{\circ}_{s} + \nu\Delta V^{*})}$$
(32)

La stima dell'entropia molare allo stato standard della fayalite attraverso la (32) fornisce un valore di 35.98 cal/mole °K che è molto più vicino al valore calorimetrico (35.45 cal/mole °K, cf. ROBIE e WALBAUM, 1968) rispetto a 39.4 ottenuto attraverso l'equazione (18). Il valore calcolato per Co₂SiO₄ è 32.95 cal/mole °K (quello sperimentale S° = 37.9 cal/mole °K, cf BARIN *et al.*, 1977) e quello per Ni₂SiO₄ (valore sperimentale 26.3 cal/mole °K, BARIN *et al.*, 1977) è abbassato a 25.74 cal/mole °K rispetto a 27.94 ottenuto attraverso la normale relazione (18). La mancanza di dati sperimentali su composti ortosilicati di altri elementi con simmetria non sferica non consente una utilizzazione estensiva dell'equazione (32).

I valori di entropia di componenti fittizi ortosilicati e metasilicati ottenuti con il metodo sopra descritto sono elencati in tabella 1 e 2 rispettivamente.

I COEFFICIENTI DELLA FUNZIONE DI MAYER-KELLEY

Le stime della capacità termica possono essere affrontate con gli stessi metodi della additività precedentemente descritti per l'entropia. Come per l'entropia le migliori stime si ottengono scrivendo reazioni reversibili tra composti isostrutturali (tab. 3) e assumendo $\Delta C_{p \text{ reazione}} = 0$ a tutte le temperature. $C_{pM_v^{i}X}$ per il composto sconosciuto $M_v^{i}O$ è poi ottenuto attraverso l'algoritmo della sommatoria (cf. Helgeson *et al.*, 1978, eq. 85):

$$C_{pM_{i}X} = \sum_{i} n_{i,r} (A_{i} + B_{i}T + C_{i}T^{-2} +)$$
 (33)

dove n_i sono i coefficienti stechiometrici delle i fasi nella reazione oltre al composto sconosciuto $M_{\nu}^{i}X$ (n_i è positivo per i prodotti e negativo per i reattanti) e $n_{M_{\nu}^{i}X} = 1$. Per ottenere dati internamente consistenti, quando possibile, sono state utilizzate le stesse reazioni per la derivazione di S°_{M_{\nu}^{i}X} e di C_{pM_{\nu}^{i}X}. Nel caso in cui le condizioni di isostrutturalità non fossero rispettate allora Cp_{M_{\nu}^{i}X} è ottenuto da una semplice sommatoria dei C_p degli ossidi costituenti. Questo metodo implica una maggiore incertezza e non tiene conto della dipendenza dalla temperatura delle energie di legame in un composto sconosciuto (cf. HELGESON *et al.*, 1978 per una spiegazione più estensiva). In ogni caso si assume che la sommatoria è valida senza considerare il tipo di espansione polinomiale adottata dagli autori per tener conto della dipendenza sperimentale di C_p dalla temperatura.

Le tavole di ROBIE et al. (1978) seguono l'espansione polinomiale:

$$C_p = A + BT + CT^{-2} + DT^2 + ET^{-1/2}$$
 (34)

HELGESON *et al.* (1978) adottano i primi tre termini cambiando segno a C:

(35)

 $C_{p} = A + BT - CT^{-2}$

BARIN e KNACKE (1973) usano una espansione fino al quarto termine:

$$C_{p} = A + BT + CT^{-2} + DT^{2}$$
(36)

Sommando alla (33) i polinomi (34) e (35) si ha coincidenza con l'assunzione che i coefficienti D ed E nella (35) siano uguali a zero o, al contrario, che D ed E abbiano effetti trascurabili sulla funzione (34). Questa assunzione potrebbe avere qualche conseguenza non desiderata se si tentasse di spingere la stima di Cp_{MX} oltre la temperatura limite di validità dei polinomi.

I coefficienti della funzione di Mayer-Kelley relativi a componenti fittizi ortosilicati e metasilicati ottenuti con il metodo sopra descritto sono osservabili in tabella 1 e 2.

Volume di componenti fittizi

— Generalità

Il calcolo del volume molare dei componenti fittizi non è strettamente necessario se non si intendono valutare reazioni di dissoluzione a $P \neq P_{standard}$, in quanto tale grandezza non entra nel calcolo diretto dell'energia libera del componente fittizio (cf. equazione 56). Come abbiamo visto in precedenza per il calcolo di S°, una stima del volume del componente è peraltro necessaria per ottenere valori di S° ben approssimati.

Il volume molare di componenti fittizi allo stato standard può essere ottenuto attraverso una applicazione dell'espressione per i coefficienti di espansione composizionale γ_v al caso limite dove x (frazione molare del catione più grande nella soluzione solida binaria) ha valore 1 o 0 (cf HAZEN e FINGER, 1982; eq. 8-2):

$$\gamma_{\rm v} = \frac{1}{\rm v} \left(\frac{\partial_{\rm v}}{\partial_{\rm x}} \right)_{\rm P, T}$$
(37)

Le unità di γ_v sono frazioni di cambiamento del volume per mole. Come discusso da Hazen e FINGER (1982) la relazione (37) è più cor-

162

retta della semplice proporzionalità della legge di Vegard:

$$V \propto r^3$$
 (38)

dove il volume molare V di composti isomorfi è semplicemente proporzionale al cubo del raggio del catione sostituente r.

Per derivare i volumi molari dall'equazione (37) per tutti i composti di interesse di questo studio si dovrebbero avere informazioni sperimentali sulle composizioni binarie che, nella maggior parte dei casi, non sono attualmente disponibili. Tuttavia, come discusso da HAZEN E FINGER (1982), i volumi di composti isostrutturali possono essere ottenuti attraverso una interpolazione lineare dei volumi determinati sperimentalmente ed il cubo del raggio del catione nell'appropriata coordinazione con l'ossigeno.

— Ortosilicati

BROWN (1980) calcolò la seguente espressione valida per i volumi di cella dei composti isostrutturali dell'olivina:

 $V_{\rm A}^{\rm o} = 188.32 \ {\rm r}^3 + 220.17 \tag{39}$

Questa relazione è basata su 13 valori, ha un coefficiente di correlazione R2 ≈ 0.99 e non include il volume di cella di Ca₂SiO₄ che è apparentemente affetto da errore nei parametri di cella. In quanto tratteremo di volumi molari espressi in cm³/mole trasformeremo l'equazione (39) nella forma più utilizzabile:

$$V^{\circ} = (188.32 r^{3} + 220.17) \frac{N_{\circ} 10^{-24}}{z}$$
 (40)

dove N_o è il numero di Avogadro e z il numero di unità di formula dell'unità cella. Si assume che l'equazione (40) sia valida per composti multipli senza considerare la loro carica e la loro proporzione molare (questo è implicito nella derivazione della relazione 39; cf. tab. 4 in BROWN, 1980). In questo caso r rappresenta il raggio medio pesato dei cationi nella soluzione solida. Componenti fittizi con siti di cationi vacanti nel reticolo come $Sc_{4/3}\square_{2/3}SiO_4$ sono stati calcolati assumendo che la vacanza (\square) occupi lo stesso volume del catione (Sc), non considerando gli effetti del contributo di deformazione sul volume molare. La regressione è stata eseguita utilizzando i raggi cationici di SHANNON e PREWITT (1969) che consentono una precisa stima degli effetti di coordinazione. Sono stati calcolati i volumi molari di componenti ortosilicati di cationi bivalenti, trivalenti e tetravalenti bilanciando gli eccessi di carica sia con vacanze cationiche nella quantità stechiometrica sia con l'accoppiamento dello ione monovalente Li⁺ (cf. GANGULI, 1977).

I cationi tetravalenti sono stati assunti formare ortosilicati tetragonali isostrutturali con gli ortosilicati di zircone, hafnio e attinidi. Come dimostrato da SPEER (1980) c'è una cospicua correlazione tra il volume di cella e il raggio ionico per questo gruppo di composti isostrutturali. La regressione dei volumi molari sui raggi cationici in coordinazione VIII con l'ossigeno, basata su 7 valori (cf. SPEER, 1980), ha la forma seguente:

 $V^{\circ} = 3.4036 + 42.8485 \times r \tag{41}$

Questa relazione ha un parametro di correlazione R2 = 0.988e l'errore standard influenza la seconda cifra decimale dei volumi molari in cm3/mole. Si può dimostrare che si ottiene una migliore statistica con una regressione operata utilizzando i raggi ionici di WHITTAKER e MUNTUS (1970), R2 = 0.994, mentre statistiche peggiori si ottengono con i raggi al cubo, R2 = 0.94. Per una consistenza interna del modello sono stati utilizzati i raggi di Shannon e Prewitt anche per questo gruppo di composti. Oltre ai composti isostrutturali dell'olivina e dei composti degli attinidi, altri due gruppi di ortosilicati potrebbero essere interessanti. Questi contengono ioni alcalini Li⁺, Na⁺, K⁺, Rb⁺ e Cs⁺ sia in semplice combinazione con il gruppo ortosilicato SiO₄⁴⁻ che in combinazione doppia con SiO₄⁴⁻ e Al³⁺. Composti del tipo RbAlSiO₄ e CsAlSiO₄ hanno una struttura cubica (cf. cartelle ASTM 10-13 e 10-14), perciò non possono essere considerati isostrutturali con il gruppo della nefelina (la nefelina e la kalsilite sono esagonali) ma piuttosto con la carnegieite di alta temperatura (cf. DEER et al., 1968). Dai parametri reticolari possono essere calcolati i loro volumi molari, risultati rispettivamente 58.09 cm³/mole e 60.39 cm³/mole assumendo z = 24. Nessuna regressione affidabile può essere tentata per determinare i volumi dai raggi ionici per questi composti in un singolo gruppo isostrutturale in quanto il numero di coordinazione dei cationi nel gruppo varia con il loro raggio ionico. I dati termodinamici per LiAlSiO₄ (eucryptite) e nefelina e kalsilite sono riportati rispettivamente in Robie *et al.* (1978) e Helgeson *et al.* (1978). Il volume molare di LiAlSiO₄-eucryptite è 53.63 cm³/mole, vicino a quelli dei termini di Na e K (54.16 cm³/mole e 59.89 cm³/mole rispettivamente). I dati termodinamici dei composti Li₄SiO₄ sono riportati da KARAPET'IANTS e KARAPET'IANTS (1970) e BARIN *et al.* (1977). Le loro tabelle, tuttavia, non riportano i volumi molari. Li₄SiO₄ (cartella 20-637 ASTM) è monoclino ed ha un volume molare di 50.071 cm³/mole.

— Metasilicati

Per analogia con i composti ortosilicati considereremo metasilicati del tipo:

Regressioni della legge di Vegard sono state ottenute sulla base dei volumi molari riportati da CAMERON e PAPIKE (1980, 1981). I metasilicati di litio sulla base di tre valori hanno dato la seguente regressione:

$$V^{\circ} = 1/2 \left[44.543 + 60.055 \times \left(\frac{r_{c} + r_{Li}}{2} \right)^{3} \right]$$
(42)

che ha un parametro di correlazione R2 = 0.9997.

Apparentemente i metasilicati di Ca e Na possono essere regressi con un'unica espressione; basata su 10 valori e con una correlazione R2 = 0.987:

$$V^{\circ} = 1/2 \left[46.586 + 33.939 \times \left(\frac{r_{c} + r_{Ca, Na}}{2} \right)^{3} \right]$$
 (43)

I metasilicati di cationi bivalenti hanno bisogno di una regressione separata. Per ottenere dei buoni coefficienti di correlazione si deve escludere la clinoenstatite o alternativamente considerare il raggio ionico di Mg^{2+} in coordinazione VI con l'ossigeno. Sulla base di 3 valori (Ca, Fe, Zn) si è ottenuta la seguente regressione con R2 = 0.997:

(44)

 $V^{\circ} = 30.697 + 9.1785 \times r^{3}$

Tutte le espressioni precedenti sono relative a pirosseni con simmetria C2/c. Assumeremo che la transizione clino-orto determini dei cambiamenti volumetrici entro gli errori impliciti nelle regressioni. Inoltre la regressione (44) sarà ritenuta valida per componenti che contengono difetti. Tra i componenti del tipo $M^+AlSi_2O_6$ è necessario calcolare solo CsAlSi_2O_6. La regressione per gli altri 4 alcali è la seguente:

$$V^{\circ} = 79.337 + 4.664 \times r^{3}$$
(45)

con un parametro di correlazione basso (R2 = 0.728). Il volume molare ottenuto per CsAlSi₂O₆ è 102.25 \pm 1.7 cm³/mole.

I volumi molari di componenti fittizi ortosilicati e metasilicati ottenuti con il metodo sopra descritto sono riportati in tabella 1 e 2 rispettivamente.

REAZIONI DI DISSOLUZIONE

Vi sono ovviamente diversi modi di descrivere una reazione di dissoluzione di un composto silicatico in acqua. TARDY e GARRELS (1974, 1977) hanno proposto che la dissoluzione di un generico ossido cristallino MO_c in acqua sia esprimibile come:

$$2H_{ac}^{+} + MO_{c} \rightarrow M_{ac}^{2+} + H_{2}O_{lig}$$

$$\tag{46}$$

L'energia di dissoluzione $\Delta G^{\circ}_{(46)}$ per la reazione (46) è:

$$\Delta G^{\circ}_{(46)} = -\Delta O^{2-}_{cat} + \Delta G^{\circ}_{f_{H_2O_{lig}}}$$

$$\tag{47}$$

dove ΔO_{cat}^{2-} è la differenza tra l'energia libera di formazione dell'ossido cristallino ed il suo catione acquoso M_{ac}^{2+} e $\Delta G_{fH_2O_{liq}}^{o}$ è l'energia libera di formazione di H_2O_{liq} allo stato di riferimento.

La dissoluzione di un generico silicato (o alluminato) di terra rara, ad esempio $Sm_{4/3}SiO_4$ può essere descritta dal seguente set di reazioni:

$$\operatorname{Sm}_{4/3}\operatorname{SiO}_{4_{c}} \rightarrow 2/3 \operatorname{Sm}_{2}\operatorname{O}_{3_{c}} + \operatorname{SiO}_{2_{c}}$$
 (48)

166

$$2/3 \text{ Sm}_2\text{O}_{3_c} + 4\text{H}_{ac}^+ \rightarrow 4/3 \text{ Sm}_{ac}^{3+} + 2\text{H}_2\text{O}_{liq}$$
(49)

$$SiO_{2_{c}} + 2H_{2}O_{liq} \rightarrow H_{4}SiO_{4_{ac}}^{o}$$
(50)

Come mostrato da OTTONELLO *et al.* (1979) la variazione di energia libera connessa con la reazione (48) è assimilabile al parametro «— Δ compound» come definito da Tardy e Garrels (1977), i.e.:

$$\Delta G_{(48)} = -\Delta compound = K_c (\Delta O_{cat}^{2-} - \Delta O_{cat. rif.}^{2-})$$
(51)

Sulla base di questa relazione, OTTONELLO *et al.* (1979) hanno proposto valori di energie di dissoluzione per vari componenti in traccia (cf. OTTONELLO*et al.*, 1979; TARDY e GARRELS, 1974, 1977 per una più dettagliata discussione sul metodo).

La sequenza di reazioni (48, 49, 50) può essere semplificata nella forma:

$$La_{4/3}SiO_{4_{c}} + 4H_{ac}^{+} \rightleftharpoons 4/3 La_{ac}^{3} + H_{4}SiO_{4_{ac}}^{\circ}$$

$$(52)$$

o anche riformulata come:

$$La_{4/3}SiO_{4_{c}} + 4H_{ac}^{+} \approx 4/3 La_{ac}^{3+} + SiO_{2_{c}} + 2H_{2}O_{liq}$$
 (53)

in cui compare il composto cristallino ${\rm SiO}_{2_c}$ come prodotto di dissoluzione.

Noti i valori $H_{f'}^{\circ}$ S°, V° e la funzione del calore specifico C_p per il composto $La_{4/3}SiO_4$ e per gli ioni e le molecole acquose (nonché SiO_{2_c}) la costante di reazione per la (52) o la (53) è facilmente derivabile alle varie condizioni Pr e T attraverso il calcolo della ΔG di reazione, i.e.:

$$K_{53} = \exp -\frac{-\Delta G_{53}}{RT}$$
 (54)

$$\Delta G_{(53)} = 4/3 \ G_{Pr, T_{La^{3+}ac}} + G_{Pr, T_{SiO_{2c}}} + 2 \ G_{Pr, T_{H_2O_{liq}}} - G_{Pr, T_{La_{4/3}SiO_{4c}}} - 4G_{Pr, T_{H_{ac}}}$$
(55)

con:

$$G_{Pr, TLa_{4/3}SiO_{4_c}} = H^{\circ}_{fLa_{4/3}SiO_{4_c}} + \int^{T}_{Tr} CpdT - T (S^{\circ}_{La_{4/3}SiO_4} + \int^{T}_{Tr} CpdT)$$
(56)

GRADO DI DISEQUILIBRIO E «MOBILITÀ»

Il grado di disequilibrio di un dato composto cristallino c con le specie costituenti disciolte (ac) può essere rappresentato dal valore $\log(Q_c/K_c)$, dove K_c è la costante di reazione (i.e. K_{52} o K_{53}) e Q_c è generalizzabile come:

$$Q_{c} = \prod_{i} m_{i}^{\nu i, c} \gamma_{i}^{\nu i, c/} a_{c}$$
(57)
con m_i, γ_{i} = molalità e coefficiente di attività della specie i-esima
che concorre alla formazione della fase condensata c con stechiome-
tria $\nu_{i, c'}$ a_{c} = attività dei componenti cristallini in reazione nelle fa-
si condensate c.

Il metodo è analogo alle procedure comunemente usate per definire il grado di saturazione di una fase condensata in equilibrio con un fluido (cf. REED, 1982; REED e SPYCHER, 1984). La tendenza alla dissoluzione si ha per valori $\log(Q_c/K_c) < 0$. Và notato che il metodo prende espressamente in considerazione lo stato di soluto del componente in traccia nella fase solida attraverso il valore di attività termodinamica a_c nonché la speciazione del fluido in interazione attraverso i valori di molalità m_i e il coefficiente di attività ionica individuale γ_i degli ioni acquosi. L'attività del componente cristallino in tracce nella fase condensata è derivabile dal valore di concentrazione molare in soluzione solida (X_c) attraverso:

$$a_{c} = X_{c} \cdot \gamma_{c} \tag{58}$$

dove γ_c è il coefficiente di attività del componente in soluzione solida. Nel caso più semplice di soluzione solida ideale, $\gamma_c = 1$ e la (58) si riduce a:

 $a_{c_{ideale}} = X_{c_{ideale}}$ (59)

Vi è inoltre in geochimica la tendenza a considerare che il coefficiente di attività tenda ad 1 all'aumentare della diluizione del componente cristallino in soluzione solida. Questo è sempre vero qualora si trattino i composti condensati come *soluzioni* solide nel senso canonico del termine e si adotti per il componente in traccia lo stato standard di diluizione infinita. Non è peraltro necessariamente vero qualora si trattino i composti solidi come *misture* e si adotti come stato standard per il componente in traccia quello di componente puro a P e T di interesse (questo è il caso quasi sempre ricorrente; cf. I.U.P.A.C., 1979, per la definizione canonica di «soluzione» e «mistura»). Recenti misure sperimentali (MORLOTTI e OTTONELLO, 1984; OTTONELLO e MORLOTTI, 1987) e calcoli basati su modelli di struttura-energia (OTTONELLO, 1987) mostrano che i coefficienti di attività per componenti in traccia tendono progressivamente ad aumentare al diminuire della concentrazione molare dei componenti in traccia, qualora questi coinvolgano eccessi di cariche e l'instaurarsi di equilibri difettuali.

Considerazioni aggiuntive sulle energie dei componenti fittizi contenenti difetti reticolari

Le soluzioni solide di componenti del tipo $M_{4/3}SiO_4$ o $M(SiO_4)_{1.5}$ all'interno della struttura dell'olivina implicano la capacità da parte di quest'ultima di incorporare un eccesso di silice in posizione interstiziale e di mantenere la neutralità elettrica attraverso la creazione di vacanze nel sottoreticolo cationico. Questa non è semplicemente una condizione tipo difetto Frenkel in quanto le vacanze di cationi che accompagnano gli interstizi sono due volte quelle canoniche. Come mostrato da MORLOTTI e OTTONELLO (1984) la solubilità dell'ortosilicato di Sm trivalente all'interno dell'olivina forsteritica è dominata da energie di produzione di difetti puntuali, che costituiscono la totalità dell'energia libera di eccesso della soluzione solida. Il processo di soluzione solida può essere idealizzato nel seguente modo (cf. MORLOTTI e OTTONELLO, 1984, eq. 11, I; 13):

 $SiO_2 \rightarrow \Box_{Mg}^{II} + Si_i^{\dots} + 2O_o^x$ (60)

 $2/3 \ Sm_2O_3 + \Box \ {}^{I \ I}_{Mg} + Si_i \overset{\dots}{\longrightarrow} 4/3 \ Sm^{\cdot}_{Mg} + \Box \ {}^{I \ I}_{Mg} + 1/6 \ Si_i \overset{\dots}{\longrightarrow} + 2O^x_o \ \ (61)$

dove sono utilizzate le notazioni di chimica difettuale di Kröger.

Nella definizione di componenti fittizi ortosilicati l'energia necessaria per creare i difetti potrebbe essere contenuta nei valori di entropia ed entalpia allo stato standard del componente stesso. Ciò può essere fatto considerando composti del tipo ($M_{2/3}$, $\Box_{1/3}$)₂SiO₄ come dovuti a processi di «incorporamento sottrattivo», dove il componente in eccesso (SiO₄⁴⁻) ha un reticolo completo, mentre il reticolo cationico presenta siti vacanti. Il difetto è analogo a quello di Shottky ad eccezione del fatto che non ci sono un ugual numero di siti vacanti nel subreticolo cationico ed anionico. Per una maggiore semplicità immagineremo che la creazione di vacanze nei siti cationici non modifichi il volume molare del componente (ciò è consistente con il calcolo dei volumi molari fittizi effettuato in precedenza, ma non è completamente vero). Il cambiamento nell'energia libera che accompagna la formazione del difetto è semplicemente in relazione all'aumento dell'energia interna ΔU e all'aumento concomitante dell'entropia ΔS . Se w_s è l'energia necessaria per creare un difetto cationico e n_s sono i difetti in una mole di composto, allora:

$$\Delta U = n_s w_s \tag{62}$$

(notare che w_s è il lavoro richiesto per rimuovere il catione dall'interno del cristallo alla superficie e non all'infinito, così w_s è minore del contributo all'energia reticolare del catione U_c). Il calcolo di w_s in cristalli ionici si basa su:

1) applicabilità del calcolo del potenziale interionico tra due corpi a corta distanza;

2) regole di additività che consentono la definizione di parametri come la carica ionica, la polarizzabilità e la derivazione di una funzione esponenziale esprimente la dipendenza dei potenziali interionici a corto raggio dalla distanza tra gli ioni (Boswara e Frank-LYN, 1968).

Sfortunatamente i calcoli di questo tipo non forniscono buoni risultati per gli ossidi semplici e la loro applicabilità a composti più complessi deve essere dimostrata.

L'aumento di entropia configurazionale a seguito della creazione di difetti reticolari è descritto dalla relazione di Boltzmann tra entropia e probabilità (P) (cf. eq. 24, 25, 26, 27 e 28). La variazione di energia libera molare del componente sarà:

 $\Delta G = n_s w_s - TK [N \ln N - (N - n_s) \ln (N - n_s) - n_s \ln n_s] (63)$

Questa relazione può essere risolta in diversi modi. Il primo, quello comunemente usato, consiste nel considerare la derivata parziale di ΔG rispetto a n_s uguale a zero all'equilibrio:

$$\begin{pmatrix} \partial \Delta G \\ \partial n_s \end{pmatrix}_{T} = 0 \implies w_s = KT \ln \frac{(N-n_s)}{n_s}$$
 (64)

Poiché nei nostri componenti N e n_s sono mutualmente correlati e costanti (ci sono infatti $2N_0$ siti cationici e $N_0 = n_s$ siti vacanti per ogni mole di componente) w, è inequivocabilmente determinata e ΔG ha un valore costante ad una data temperatura indipendentemente dal tipo di cationi nella matrice cationica. Alternativamente si potrebbe sostituire nella (63) il valore reale di w, dipendente dal tipo di catione estratto dal reticolo. Un valore variabile di w_s è peraltro in contrasto con la relazione (64). Un'altra possibilità è considerare che nelle soluzioni solide binarie con un componente in quantità maggiore (esempio Mg²⁺ nell'olivina forsteritica) il processo di creazione del difetto è sempre fatto a spese del catione maggiore. Questo, quando i componenti fittizi sono a livello di tracce, giustifica un valore costante per w_s ma deve ancora essere in accordo con la relazione (64). Un modo alternativo per tener conto delle energie dei meccanismi di creazione dei difetti nelle soluzioni solide è considerarle come termini di energia libera di eccesso che accompagnano il processo di soluzione solida. Ciò può essere fatto attraverso la seguente relazione:

$$N \equiv X_A N_o + X_B N_o \tag{63}$$

dove X_A è la frazione molare del componente maggiore e X_B la frazione molare del componente fittizio nella soluzione solida, e:

$$n_s \equiv 1/3 X_B N_o \tag{64}$$

L'energia associata con il meccanismo di creazione del difetto diventa perciò dipendente dalla concentrazione e non se ne deve tener conto nei valori di entalpia ed entropia allo stato standard ma solamente nella determinazione dei parametri di interazione delle soluzioni solide e conseguentemente nel valore di γ_c .

BIBLIOGRAFIA

- BARIN I., KNACKE O. (1973) Thermochemical properties of inorganic substances. Springer-Verlag, Berlin-Heidelberg-New York.
- BARIN I., KNACKE O., KUBASCHEWSKI O. (1977) Thermochemical properties of inorganic substances. Supplement. Springer-Verlag, Berlin-Heidelberg-New York.
- BOSWARA I.M., FRANKLYN A.D. (1968) Theory of the energetics of simple defects in oxides. In Mass Transport in Oxides: J.B. Wachtman and A.D. Franklyn (eds.) *Natl. Bur. Stand (US)*, Spec. Publ., **296**, 25-32.

- BURNS R.G. (1970) Mineralogical application of crystal field theory. Cambridge University Press, Cambridge, England.
- BURNS R.G., FYFE W.S. (1967) Crystal field theory and the geochemistry of transition elements. In: Abelson P.H. (ed.). *Researches in Geochemistry*, **2**, John Wiley & Sons, New York, 259-285.
- BROWN GG.E. (1980) Olivines and silicate spinels. In: Orthosilicates. *Review Mineral.*,5, Ribbe P.H. ed., Mineral. Soc. of America.
- CAMERON M., PAPIKE J.J. (1980) Crystal chemistry of silicate pyroxenes. In: Pyroxenes. *Review Mineral.*, 7, Ribbe P.H. ed., Mineral. Soc. of America.
- CAMERON M., PAPIKE J.J. (1981) Structural and Chemical variations in pyroxenes. Am. Mineral., 66, 1-50.
- DEER W.A., HOWIE R.A., ZUSSMANN J. (1968) Rock forming Minerals (6th ed.). London: Longmans, Green and Co., Ltd.
- FLOYD P.A. (1977) Rare earth elements mobility and geochemical characterization of spilitic rocks. *Nature*, **269**, 134-137.
- FREY F.A. (1969) Rare earth abundances in a high temperature peridotite intrusion. Geochim. Cosmochim. Acta, 33, 1429-1447.
- FREY F.A., BRYAN W.B., THOMPSON G. (1974) Atlantic ocean floor: geochemistry and petrology from legs 2 and 3 of the Deep Sea Drilling Project. J. Geophys. Res., 79, 5507-5527.
- FYFE W.S., TURNER F.J., VERHOOGEN J. (1958) Metamorphic reactions and metamorphic facies. Geol. Soc. Amer. Mem., 75, 253 pp.
- GANGULI D. (1977) Crystal-chemical aspects of olivine structures. N. Jahrb. Mineral. Abh., 130, 303-318.
- GREENWOOD N.N. (1970) Ionic Crystals, lattice defects and nonstoichiometry. Chemical Pub. Co., New York.
- HART S.R. (1969) K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts. *Earth Planet. Sci. Lett.*, 6, 295-303.
- HAZEN R.M., FINGER Z.W. (1982) Comparative Crystal Chemistry. J. Wiley and Son. Chichester-New York-Brisbane-Toronto-Singapore.
- HELGESON H.C., DELANY J., BIRD D.K. (1978) Summary and critique of the thermodynamic properties of rock forming minerals. Am. J. Sci., 278A, 229 pp.
- HELLMAN P.L., HENDERSON P. (1977) Are rare earth elements mobile during spilitization? *Nature*, **267**, 38-40.
- HELLMAN P.L., SMITH R., HENDERSON P. (1977) Rare earth element investigation of the Cliefden outcrop. N.S.W. Australia. Contrib. Mineral. Petrol., 65, 155-164.
- KARAPET'YANTS M.KH., KARAPET'YANTS M.L. (1970) The main thermodynamic constants of inorganic and organic substances. Ann Arbor-Humphrey Science Publishers. Ann Arbor, London.
- I.U.PA.C. (1979) Manual of symbols and terminology for physicochemical quantities and units. *Pure & Appl. Chem.*, **51**, 1-41.
- MENZIES M. (1976) Rare earth geochemistry of fused ophiolitic and alpine lherzolites. I - Othrys, Lanze and Trodos. *Geochim. Cosmochim. Acta*, 40, 645-656.

- MORLOTTI R., OTTONELLO G. (1984) The solution of trace amounts of Sm in forsteritic olivine: an experimental study by emf galvanic cell measurements. *Geochim. Cosmochim. Acta,* 48, 1173-1181.
- NAUMOV G.B., RYZHENKO B., KHODAKOVSKY I.L. (1971) Handbook of thermodynamic data, Moscow Atomizdat, 239 pp.
- OHASHI Y (1976) Lattice energy of some silicates minerals and the effect of oxygen bridging in relation to crystallization sequence. *Carnegie Inst. Wash. Yb.*, **75**, 644-648.
- OTTONELLO G. (1987) Energies and interactions in binary (Pbnm) orthosilicates: a Born parametrization. *Geochim. Cosmochim. Acta*, **51**, 3119-3136.
- OTTONELLO G., PICCARDO G.B., ERNST W.G. (1979) Petrogenesis of some Ligurian peridotites - II. Rare earth element chemistry. *Geochim. Cosmochim. Acta*, 43, 1273-1274.
- OTTONELLO G., MORLOTTI R. (1987) Thermodynamics of the (nickel + magnesium) olivine solid solution. J. Chem. Thermodynamics, **19**, 809-818.
- PETRINI R., JORON J.L., OTTONELLO G., BONATTI E., SEYLER M. (1988) Basaltic dykes from Zabargad Island, Red Sea: Petrology and Geochemistry. *Tectonophysics (Spec. Pub.)*, in stampa.
- REED M.H. (1982) Calculation of multicomponent chemical equilibria and reaction processes in system involving minerals, gases and an aqueous phase. *Geochim. Cosmochim. Acta*, 46, 513-528.
- REED M.H., SPYCHER N. (1984) Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. *Geochim. Cosmochim. Acta*, **48**, 1479-1492.
- ROBIE R.A., HEMINGWAY B.S., TAKEI H. (1982) Heat capacities and entropies of Mg2SiO₄, Mn₂SiO₄ and Co₂SiO₄ between 5 and 380°K. *American Mineralogist*, **67**, 470-482.
- ROBIE R.A., WALBAUM D.R. (1968) Thermodynamic properties of minerals and related substances at 298°K (25°C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U.S. Geol. Surv. Bull., 1259.
- ROBIE R.A., HEMINGWAY B.S., FISHER J.R. (1978) Thermodynamic properties of mineral and related substances at 298.15°K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull., 1452.
- RONOV A.B., MIGDISOV A.A. (1965) Principal features of the geochemistry of hydrolizate elements in weathering and sedimentation. *Geochem. Internat.*, **2**, 92-120.
- SAXENA S.K. (1977) A new electronegativity scale for geochemists. In: Energetics of Geological Processes S.K. Saxena and S. Bhattacharsi eds. Springer-Verlag, New York, Heidelberg, Berlin.
- SAXENA S.K. (1981) Fictive component model of Pyroxenes and multicomponent phase equilibria. *Contrib. Mineral. Petrol.*, **78**, 345-351.
- SHANNON R.D., PREWITT C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Cristallogr., B25, 925-946.
- SPEER J.A. (1980) Zircon in Ortosilicates, *Review in mineralogy*, **5**, Ribbe P.H. ed., Mineral Soc. of America.

- TARDY Y., GARRELS R.M. (1974) A method of estimating the Gibbs energies of formation of layer silicates. Geochim. Cosmochim. Acta, 38, 1101-1116.
- TARDY Y., GARRELS R.M. (1977) Prediction of Gibbs energies of formation of compaunds from the elements - II. Monovalent and divalent metal silicates. Geochim. Cosmochim. Acta, 41, 87-92.
- TOOP e SAMIS (1962a) Activities of ions in silicate melts. *Trans. Met. Soc. A.I.M.E.*, **224**, 878-887.
- Toop e SAMIS (1962b) Some new ionic concepts of silicate slags. Can. Met. Quart., 1, 129-152.
- WITTAKER E.J.M., MUNTUS R. (1970) Ionic radii for use in geochemistry. Geochim. Cosmochim. Acta, 34, 945-956.
- Wood B.J. (1980) Crystal field electronic effects on the themodynamic properties of Fe²⁺ minerals. In: Advances in Physical Geochemistry Vol. I. I: Saxena S.K. ed. Springer-Verlag, New York-Heidelberg-Berlin.
- WOOD D.A., GIBSON I.L., THOMPSON R.H. (1979) Elemental mobility during zeolite facies metamorphism of the Tertiary basalts of Eastern Iceland. Contrib. Mineral. Petrol., 55, 241-254.

(ms. pres. il 15 ottobre 1987; ult. bozze il 31 dicembre 1987)