Atti Soc. Tosc. Sci. Nat., Mem., Serie A, 88 (1981) pagg. 117-136, 13 ff., 2 tabb.

# M. DRAGO (\*), B. COSMA (\*) and V. CONTARDI (\*)

# DISTRIBUTION OF HEAVY METALS IN SUPERFICIAL MARINE SEDIMENTS OF SAVONA HARBOR AND VADO LIGURE BAY (LIGURIAN SEA) (\*\*)

**Riassunto** — Distribuzione dei metalli pesanti nei sedimenti marini superficiali del porto di Savona e della baia di Vado Ligure (Mar Ligure). Sono state determinate, mediante spettroscopia di assorbimento atomico, le concentrazioni di Cr, Cu, Ni, e Mn nei sedimenti superficiali della Rada di Vado e della zona antistante il porto di Savona. I risultati sono stati messi in relazione con la granulometria e con il contenuto di carbonio organico e di sostanze volatili dei sedimenti. E' stato possibile accertare che le concentrazioni di cromo e rame sono influenzate dalle attività industriali e portuali. La distribuzione di nichel e manganese è invece prevalentemente influenzata dalle caratteristiche geologiche dell'area in studio.

**Abstract** — The concentrations of heavy metals (Cr, Cu, Ni and Mn) in Savona Harbor and Vado Bay sediments have been analysed by atomic absorption spectro-photometry and related to granulometry, organic carbon and volatile substances concentrations in the sediments. The results show that chromium and copper concentrations are influenced by the harbor and industrial activities. Nickel and manganese distributions are largely influenced by the geological characteristics of the study area.

Key words — pollution, heavy metals, sea sediments, Savona Harbor and Vado Bay (Ligurian Sea - Italy).

#### INTRODUCTION

A knowledge of the distribution of heavy metals in marine sediments is fundamental to the study of environmental pollution since such elements can be toxic even in traces and can cause harmful effects.

<sup>(\*)</sup> Istituto di Chimica Generale e Inorganica, Università di Genova (Italy).

<sup>(\*\*)</sup> This work was supported by the C.N.R. Project « Oceanografia e Fondi Marini », subproject « Inquinamento ». Contribution of the Gruppo Ricerca Oceanologica - Genova.

This study was undertaken to provide information on the abundance and distribution of Cr, Cu, Ni, Mn and their correlations with total organic carbon (TOC) and total volatile substances (TVS) in sediments from Vado Bay and Savona Harbor, which are close to an industrial area.

This study evaluates 27 samples collected during the « Bannock » cruise (1974) and 29 samples collected during the « Marsili »



Fig. 1 - Location of the samples.

cruise (1975), in order to assess the extent of the heavy metal pollution in the harbor environment. The samples were analysed to determine the concentration of Cr, Cu, Ni, Mn, organic carbon, total volatile substances and particle size.

The total metal and the easily extractable metal extraction techniques are most informative for environmental purpose. The

TABLE 1 - Sample locations, textural analyses and concentrations of the metals  $(\mu g \cdot g^{-1})$  in the marine sediments.

A) Total attack. B) Nitric attack.

| Station | Position     |               | Depth | Cr  |     | Cu  |    | ni  |     | Mn   |       | %. 74 un |
|---------|--------------|---------------|-------|-----|-----|-----|----|-----|-----|------|-------|----------|
| n°      | Latitude N - | - Longitude E | (m)   | Α   | в   | Α   | в  | A   | в   | ٨    | В     |          |
| 1       | 44920 11     | 08933 71      | 53    | 750 | 620 | 105 | 45 | 460 | 140 | 940  | 620   | 97.0     |
| 2       | 44 20.1      | 00035.51      | 75    | /30 | 120 | 105 | 36 | 400 | 140 | 1200 | 1220  | 79.6     |
| 2       | 44 17.7      | 00033.5       | 15    | 430 | 130 | .20 | 25 | 200 | 75  | 1300 | 12.50 | 50.0     |
| 5       | 44 19.6      | 08-32.5       | 36    | 590 | 300 | 30  | 25 | 230 | 15  | 120  | 170   | 37.4     |
| 4       | 44 19.5      | 08-32.0       |       |     | 120 |     | 10 |     | 45  |      | 220   | 23.0     |
| 2       | 44019.4      | 08032.0       | 20    | 280 | 110 | 25  | 20 | 160 | 40  | 590  | 80    | 31.0     |
| 6       | 44 19.1      | 05 31.3       | 20    | 620 | 240 | 35  | 30 | 220 | 75  | 800  | 150   | 14.1     |
| 1       | 44 19.1      | 08°32.2'      | 62    | 410 | 410 | 60  | 40 | 360 | 105 | 930  | 630   | 91.9     |
| 8       | 44019.1      | 05°31.7'      | 37    | 730 | 390 | 70  | 40 | 370 | 125 | 960  | 750   | 90.8     |
| 9       | 44019.0      | 08°31.4'      | 46    | 850 | 340 | 65  | 30 | 370 | 125 | 920  | 120   | 94.0     |
| 10      | 44°19.0'     | 08°30.6'      | 26    | 310 | 180 | 50  | 25 | 200 | 60  | 940  | 500   | 85.0     |
| 11      | 44°18.8'     | 08°33.9'      | 85    | 650 | 200 | 105 | 40 | 310 | 115 | 1290 | 1200  | , 98.1   |
| 12      | 44°18.3'     | 08°30.1'      | 37    | 610 | 180 | 90  | 45 | 280 | 90  | 1030 | 790   | 75.3     |
| 13      | 44°18.7'     | 08°30.2'      | 38    | 830 | 220 | 60  | 40 | 220 | 75  | 960  | 630   | 86.7     |
| 14      | 44°18.5'     | 08°30.8'      | 52    | 690 | 370 | 105 | 50 | 320 | 110 | 950  | 610   | 95.1     |
| 15      | 44°18.4'     | 08°30.3'      | 47    | 490 | 220 | 100 | 85 | 160 | 60  | 1150 | 600   | 62.9     |
| 16      | 44°18.4'     | 08°29.9'      |       | 810 | 130 | 90  | 50 | 310 | 80  | 1130 | 710   | 62.1     |
| 17      | 44°18,1'     | 08°30.8'      | 66    | 620 | 200 | 70  | 40 | 320 | 125 | 970  | 650   | 97.6     |
| 15      | 44°18.0'     | 08°29.8'      | 41    | 570 | 220 | 50  | 35 | 160 | 60  | 980  | 640   | 76.2     |
| 19      | 44°18.0'     | 08°32.3'      | 64    | 740 | 230 | 25  | 40 | 310 | 110 | 1350 | 910   | 98.6     |
| 20      | 44017.91     | 08029.41      |       | 510 | 100 | 40  | 30 | 130 | 35  | 1600 | 1290  | 38.2     |
| 21      | 44017.81     | 08935.01      | 215   | 360 | 170 | 65  | 35 | 170 | 75  | 2340 | 2250  | 99.7     |
| 22      | 44017.71     | 08930 41      | 59    | 400 | 220 | 40  | 25 | 720 | 85  | 900  | 600   | 20.2     |
| 23      | 44017 61     | 08938 81      | 133   | 150 | 140 | 55  | 35 | 230 | 85  | 1750 | 1670  | 99.3     |
| 24      | 44017 51     | 08929 21      | 27    | 240 | c0  | 25  | 20 | 50  | 30  | 2190 | 2110  | 22 0     |
| 25      | 44 17.5      | 00020.0       | 21    | 240 | 200 | 23  | 20 | 210 | 70  | 020  | 2110  | 77.6     |
| 20      | 44-17.5      | 08-29.9       | 55    | 410 | 200 | 40  | 25 | 210 | 70  | 220  | 1200  | 72.0     |
| 20      | 44-17.5      | 05-28.3       |       | 160 | 60  | 40  | 22 | 60  | 20  | 1550 | 1200  | 62.5     |
| 28      | 44017.5      | 08-28.8       | 23    | 330 | 120 | 60  | 40 | 250 | 50  | 1120 | 770   | 69.2     |
| 20      | 44-17.4      | 08-27.3       | 40    | 410 | 190 | 20  |    | 230 | 20  | 1120 | 110   | 02.2     |
| 29      | 44017.4      | 05°30.5'      | 72    | 600 | 100 | 65  | 40 | 350 | 110 | 1130 | 1100  | 91.1     |
| 30      | 44 17.3      | 08925.1'      |       | 300 | 130 | 70  | 50 | 120 | 45  | 1070 | 780   | 92.5     |
| 31      | 44°17.1'     | 08°29.6'      | 46    | 430 | 110 | 30  | 20 | 150 | 50  | 920  | 520   | 70.9     |
| 32      | 44°17.1'     | 08°30.0'      | 45    | 430 | 170 | 65  | 30 | 240 | 80  | 950  | 660   | 70.1     |
| 33      | 44°17.0'     | 08°28.1'      | 33    | 440 | 90  | 70  | 50 | 120 | 100 | 920  | 740   | 93.0     |
| 34      | 44°17.7'     | 08°28.3'      | 40    | 300 | 90  | 100 | 60 | 210 | 75  | 1140 | 990   | 92.4     |
| 35      | 44°17.0'     | 08°28.8'      | 50    | 290 | 130 | 75  | 45 | 210 | 70  | 1200 | 720   | 95.1     |
| 36      | 44°16.9'     | 08°33.9'      | 187   | 240 | 200 | 75  | 35 | 300 | 75  | 1100 | 1100  | 59.7     |
| 37      | 44°16.9'     | 05°28.4'      | 45    | 530 | 220 | 110 | 75 | 170 | 95  | 1090 | 820   | 95.0     |
| 38      | 44°16.7'     | 08°29.6'      | 51    | 220 | 70  | 65  | 25 | 120 | 35  | 1100 | 1100  | 11.0     |
| 39      | 44°16.6'     | 08°29.3'      | 83    | 510 | 150 | 50  | 35 | 290 | 125 | 990  | 700   | 92.2     |
| 40      | 44°16.5'     | 08932.81      | 219   | 300 | 150 | 75  | 35 | 240 | 50  | 910  | 900   | 98.4     |
| 41      | 44°15.4'     | 08927.01      | 47    | 350 | 240 | 80  | 40 | 150 | 150 | 820  | 620   | 69.0     |
| 42      | 44°16.4'     | 05027 91      | 51    | 500 | 240 | 65  | 45 | 180 | 75  | 1090 | 730   | 94.7     |
| 43      | 44016.4"     | 05928 41      | 129   | 550 | 130 | 75  | 40 | 250 | 105 | 1270 | 1000  | 97.6     |
| 44      | 44016.4"     | 00020.51      | 50    | 340 | 120 | 115 | 40 | 350 | 115 | 1230 | 590   | 97.6     |
| 45      | 44016.3'     | 00020.0       | 00    | 540 | 130 | 45  | 35 | 100 | 35  | 640  | 280   | 73.2     |
| 46      | 44916.31     | 00-27.0       | 71    | 440 | 210 | -0  | 50 | 260 | 100 | 1100 | 690   | 95.6     |
| 67      | 44016 21     | 00-27.6       | /1    | 410 | 210 | 70  | 15 | 230 | 110 | 1050 | 620   | 96.5     |
| 1.5     | 10.21        | 08-28.2       | 80    | 600 | 240 | 70  | 45 | 230 | 00  | 1100 | 650   | 87.2     |
| 40      | 10.2         | 05-31.2       | 100   | 290 | 130 | 15  | 22 | 230 | 110 | 1070 | 900   | 99 5     |
| 49      | 44-15.8      | 06°29.0'      | 313   | 120 | 70  | 80  | 40 | 250 | 110 | 1070 | 280   | 99.5     |
| 50      | 44 15.4      | 05°27.8'      | 67    | 200 | 90  | 60  | 35 | 110 | 50  | 570  | 380   | 92.7     |
| 51      | 44 14.8'     | 08°28.7'      | 266   | 260 | 180 | 75  | 40 | 250 | 100 | 840  | 770   | 99.3     |
| 52      | 44014.5'     | 08°27.4'      | 35    | 330 | 60  | 75  | 15 | 120 | 35  | 900  | 740   | 48.6     |
| 53      | ,44°14.2'    | 08°28.2'      | 90    | 300 | 120 | 40  | 25 | 230 | 75  | 1130 | 810   | 91.4     |
| 54      | 44°13.4'     | 08°27.2'      | 75    | 200 | 150 | 45  | 20 | 200 | 65  | 1260 | 850   | 12.1     |
| 55      | 44º13.2'     | 08926 61      | 30    | 150 | 40  | 55  | 15 | 90  | 25  | 580  | 300   | 93.0     |
| 51      | 1.1.913 21   | 50 2010       |       |     |     |     | 20 | 220 | OF  | 1220 | 050   | 00 1     |

The data of 27 stations are used by permission from MARINE CHEHISIRY

former is well defined and includes both metals from mineral lattices and the non-residual metals. The latter extraction technique gives results only for the weakly held metals.

The dissolution of the sediments was effected with two methods; the first provided the total extraction using a mixture of HF and HClO<sub>4</sub>, the second employed a warm nitric acid solution. Organic carbon was measured by difference between the total carbon and the total carbonate content. The total volatile substances are determined by heating the samples to  $550^{\circ}$ C.

The study areas are located in the continental shelf between Island of Bergeggi and Varazze; the investigation includes sediments of Vado Bay and Savona Harbor. The geomorphology of the study area appears to be divided in two parts: in the first, the west of Letimbro creek, shows a submarine canyon; in the second the continental shelf extends, with short and regular slopes, to 4000 m from the coast. The rebord follows on average the bathymetric of 100 m (FANUCCI et al. 1974). In the Vado Bay an area of sediment accumulation can be identified and is due to the great input of the creeks and in part to the « bay effect » already pointed out in other areas of Ligurian Sea (FIERRO et al. 1973). The study area is influenced by the general current of the Mediterranean, which flows along the Ligurian coast from E to W thereby in addition to a basic distribution pattern resulting from wave movement (long-shore currents), the transport of the materials are also influenced by sea currents. This trend is confirmed by magnetic susceptibility measurements of the sediments (DAGNINO, 1976).

### EXPERIMENTAL

#### Sampling

A Van Veen grab was utilized to collect and homogenize the superficial part of the sample, up to a thickness of 5 cm.

### Apparatus

All determinations were done with a Shandon Southern A 3400 atomic absorption spectrophotometer with air-acetylene flame, equipped with a Kipp and Zonen model 808 recorder. The wavelenghts used were: 357.9 nm for Cr, 232.0 num for Ni, 324.7 nm for Cu and 279.5 nm for Mn.

### Reagents

Certified analytical grade reagents were used for all determination: HClO<sub>4</sub>, 60%; HF, 40%; HCl, 37%; HNO<sub>3</sub>, 65%; NaOH 0.1 N. Standards were prepared by serial dilution of 1,000 mg.  $l^{-1}$  metal stock solutions. All standard solutions were prepared containing the same reagents that were added to the samples.

### Procedure

All unsieved samples were dried in an oven at 105°C and then lightly grounded.

### Total metal content

Sediment (0.5 g) was treated with 10 ml of perchloric acid and 10 ml of hydrofluoric acid, kept for 16 hours at 50-60°C and dried; the procedure was repeated twice. The residue was dissolved in dilute hydrochloric acid (BASSO and MAZZUCCOTELLI, 1975).

### Acid-extractable metal content

Sediment (1 g) was treated with 25 ml of 8N nitric acid solution for about 30 minutes at 50-60°C. The filtrate was diluted to 100 ml with 2N nitric acid (CARMODY et al., 1973).

### Total Organic Carbon (TOC)

Organic carbon was calculated by taking the difference between the percentage of total carbon and that of inorganic carbon (SHIMP et al., 1970).

The determination of total carbon was made by burning a weighed sample (0.2 g) in a closed system tube furnace at 1300°C. Carbon dioxide was absorbed in a tube containing soda-asbestos. Prior to carbon dioxide absorption, sulfur dioxide and moisture were removed from the combustion products. Inorganic carbon was determined by volumetric titration with HCl 0.5N and NaOH 0.1N standard solutions.

### Total Volatile Substances (TVS)

The total volatile substances was determined by heating the

sample in a muffle furnace at 550°C for 30 minutes (CHEN and LU, 1974).

#### RESULTS AND DISCUSSION

Table 1 shows the results of the chemical analyses, textural characteristics and locations of the samples. Table 2 shows the results of TOC% and TVS%. The values of the nitric attack versus total attack are plotted in Fig. 2. For manganese and nickel a linear relationship between the data of the two attacks can be observed (linear correlation coefficient r = 0.91 and 0.78). For copper and chromium, r is respectively 0.65 and 0.56. This is probably due to the different ways in which these elements are bonded in the sediment.

| 1 2 | 1.2 |        |    |     |      |
|-----|-----|--------|----|-----|------|
| 2   |     | 9.6    | 29 | 0.5 | 13.6 |
|     | 0.5 | 10.9   | 30 | 1.0 | 6.7  |
| 3   | 0.1 | 8.7    | 31 | 0.4 | 11.6 |
| 4   | 0.2 | 2.4    | 32 | 0.5 | 6.2  |
| 5   | 0.1 | 4.0    | 33 | 0.6 | 8.1  |
| 6   | 0.1 | 10.0   | 34 | 1.5 | 9.2  |
| 7   | 0.1 | 1 10.3 | 35 | 1.3 | 7.4  |
| 8   | 0.3 | 10.3   | 36 | 0.3 | 20.8 |
| 9   | 1.3 | 11.0   | 37 | 1.0 | 8.2  |
| 10  | 0.5 | 9.9    | 38 | 0.0 | 5.1  |
| 11  | 0.4 | 17.5   | 39 | 1.6 | 9.3  |
| 12  | 2.4 | 6.3    | 40 | 0.5 | 14.8 |
| 13  | 1.4 | 11.1   | 41 | 0.9 | 7.4  |
| 14  | 0.5 | 9.9    | 42 | 0.9 | 5.8  |
| 15  | 0.7 | 10.9   | 43 | 0.7 | 7.8  |
| 16  | 0.3 | 6.3    | 44 | 1.4 | 8.3  |
| 17  | 0.8 | 10.3   | 45 | 0.5 | 5.5  |
| 10  | 0.4 | 6.8    | 46 | 1.0 | 9.8  |
| 19  | 0.5 | 21.8   | 47 | 1.0 | 8.7  |
| 20  | 2 1 | 6.0    | 48 | 0.6 | 13.4 |
| 21  | 0.4 | 12.2   | 49 | 0.8 | 11.1 |
| 22  | 0.6 | 7.9    | 50 | 0.5 | 5.7  |
| 23  | 0.4 | 23.9   | 51 | 0.5 | 14.3 |
| 24  | 4 7 | 13.9   | 52 | 0.2 | 6.7  |
| 25  | 2.1 | 13.6   | 53 | 0.2 | 6.4  |
| 26  | 0.8 | 3.8    | 54 | 0.4 | 6.0  |
| 27  | 3.2 | 12.1   | 55 | 0.6 | 6.6  |
| 28  | 1.1 | 8.6    | 56 | 0.5 | 6.8  |

TABLE 2 - Total Organic Carbon and Total Volatile Substances in the marine sediments (%).

The distribution chart of the metals was produced on a minicomputer PD11/40 equipped with a CRT Tektronic display and a Calcomp plotter. The mathematical procedure employed consists of three processing steps. First, a triangular grid with vertices at the given sample points is built up. For all possible triangulations, the procedure generates the most equiangular one. Then, a contour map process is performed directly on the triangular grid (DE FLO-RIANI et al., 1979). Since the contours are polygonal lines obtained by means of a linear interpolation, a smoothing step is performed to produce fair and natural curves passing through the vertices of those lines (DETTORI, 1980). For every metal we have chosen the most significant isoconcentration lines in order to show the distribution.



Fig. 2 - Nitric attack results versus total attack results for Cr, Cu, Ni, and Mn concentration in marine sediments.

123

#### CHROMIUM

The results of the chemical analyses for chromium are reported in Figs. 3 and 4. Here we can point out a similar trend for the isoconcentration curves obtained with the total and nitric attack. Two areas of higher concentration in front of the Savona Harbor (800 ppm) and in the Bay of Vado Ligure (600 ppm) are noted. Since



Fig. 3 - Distribution of Cr in sediments. Total attack.

the background of the chromium concentrations varies from 300 to 400 ppm (and this seems to be related to the geological characteristics of the study area) and since the Sansobbia, Letimbro, Quiliano and Segno Creeks have a low concentration of chromium (COSMA et al., 1979), the higher values are considered to be related to the industrial input. No correlation with orgnic carbon and total volatile substances can be established.



Fig. 4 - Distribution of Cr in sediments. Nitric attack.

140

### COPPER

For copper a situation similar to chromium can be noted: the concentration trends being similar in both distribution maps (Figs. 5 and 6). Increased concentrations (100 ppm for total attack), occur again in the Savona Harbor and in the Vado Bay. This input is probably due to the industrial activities. In front of the San-



Fig. 5 - Distribution of Cu in sediments. Total attack.

sobbia creek an increase of the concentrations is clearly evident. This is considered to be related to the particle size of the samples.



Fig. 6 - Distribution of Cu in sediments. Nitric attack.

NICKEL

Nickel also (Figs. 7 and 8), presents an area of higher concentration in front of the Vado Ligure Bay. In front of Savona Harbor

141

the concentration lines confirm the influence of the input from the creeks flowing at NE of the study area. This is in accordance with the current which flows along the Ligurian coast from E to W bringing about a transport trend in that direction. These crecks flow in serpentinites which generate an enrichment of nickel especially in sediments at the mouth and along the coast. No correlation



Fig. 7 - Distribution of Ni in sediments. Total attack.

with the organic carbon and the total volatile substances can be noted.



Fig. 8 - Distribution of Ni in sediments. Nitric attack.

## MANGANESE

A study of distribution maps of manganese (Figs. 9 and 10), reveals an anomalous trend for the isoconcentration curves of this metal with respect to the other metals. The highest concentrations



Fig. 9 - Distribution of Mn in sediments. Total attack.

of manganese are mainly found in the open-sea; this is considered to be related to the sediment granulometry. There is, in fact, a positive correlation between manganese content and the increase in the fine fraction. An anomaly in the area in front of the mouth of Letimbro creek is noted; (the creek is near the outlet of the Savona sewer system). Here the concentration of manganese is



Fig. 10 - Distribution of Mn in sediments. Nitric attack.

higher near the coast; this can be related to higher carbon contents (Fig. 12).

### GRANULOMETRY

The results of the textural analyses were utilized to draw up a map of the distribution of the sediments (Fig. 11). The influence



Fig. 11 - Distribution mep of the granulometry: 1. sand <5%; 2. sand 5-30%; 3. sand 30-70%; 4. sand 70-95%.

of the Sansobbia, Letimbro, Quiliano and Segno creeks is evident in the study area; the sedimentation initially sandy, becomes gradually more lutitic with the increase of the bathymetry.

#### TOTAL ORGANIC CARBON

The organic carbon distribution (Fig. 12) is in accordance with

the localization of the urban discharges. There is a higher concentration area in front of the outlet of the Savona sewer system. On the average the trend of the isoconcentration curves is decreasing



Fig. 12 - Distribution of TOC in sediments.

in the open sea. An area with an organic carbon content higher than average is observed in the vicinity of Celle Ligure.

#### TOTAL VOLATILE SUBSTANCES

The distribution map of TVS (Fig. 13) reveals high values in two areas in front of the Letimbro creek and in an area of open sea at depth of 100 m. A high concentration of TVS in the samples at the mouth of the Letimbro is related to high organic matter content.



Fig. 13 - Distribution of TVS in sediments.

For the deeper samples the high contents of TVS is considered to be related to the grain size (i.e. increase of the fine fraction).

#### CONCLUSIONS

The results of our sediment analyses, when combined with data from earlier studies, indicate that chromium and copper have similar distributions (over several orders of magnitude in concentration), in the sediments of the study area.

The chromium and copper distributions present high values in vicinity of Savona Harbor and in the Vado Bay due to the industrial waste outfall and to the accumulation brought about by the « bay effect ».

For nickel we observe an input from N to W due to the creeks which cross basic and ultrabasic rock formations containing high quantities of nickel. For manganese the distribution is related both to the organic matter in the outlet area of the sewer system and to the granulometry and total volatile substances in the open sea.

On the average for all metals the contamination levels are comparable to or slightly less than other heavily polluted areas where large quantities of domestic and industrial wastes or waste water is discharged (Bower et al., 1978; CARMODY et al., 1973; CHIN CHEN, 1976; EISLER et al., 1977; GREIG et al., 1977; GRIGGS et al., 1978; HUNG et al., 1975).

#### AKNOWLEDGEMENTS

The authors wish to thank the researchers of the Unit n. 1 of the Project « Conservazione del suolo » subproject « Dinamica dei litorali », at the Istituto per la Matematica Applicata del C.N.R., for the helpful contribution in producing the isoconcentration maps. The authors wish also to express their thanks to dr. M. Piccazzo for his assistance in sampling and to the staff of the Oceanographic Ship « Marsili ».

#### REFERENCES

BASSO, R. and MAZZUCCOTELLI, A. (1975) - Schema di analisi con metodi rapidi dei principali elementi di rocce e minerali. *Per. Miner.*, 44, 5-40.

- BOWER, P. M., SIMPSON, H. J., WILLIAMS, S. C. and HUI LI Y. (1978) Heavy metals in the sediments of Foundry Cove, Cold Spring, New York. *Environ. Sci. Technol.*, 12, 683-687.
- CARMODY, D. J., PEARCE, J. B. and YASSO, W. E. (1973) Trace metals in sediments of New York Bight. Mar. Pollut. Bull., 4, 132-135.
- CHEN, K. J. and Lu, J. C. S. (1974) Sediment composition in Los Angeles Long Beach Harbors and San Pedro Basin, Univ. South California, *Report COM* 74, 11748/ 2GA, 191 pp.
- CHIN CHEN, J. (1976) Heavy metal distribution in sediments from Chiai coastal area. Proc. Geol. Soc. of China, 19, 78-86.
- COSMA, B., DRAGO, M., PICCAZZO, M., SCARPONI, G. and TUCCI, S. (1979) Heavy metals in Ligurian Sea sediments: distribution of Cr, Cu, Ni and Mn in superficial sediments. *Marine Chem.*, 8, 125-142.
- DAGNINO, I. (1978) On the transport of sediments along the western border of the Ligurian Sea. Atti 2º Congresso A.I.O.L. Genova 29-30 Nov. 1976, 223-225.
- DE FLORIANI, L., FALCIDIENO, B. and PIENOVI, C. (1979) Un metodo di triangolazione di regioni piane non convesse. Quaderno I.A.C., serie III, 107, 19 pp.
- DETTORI, G. (1980) Interpolation for C.A.D. using curves with tension. Proceedings International Congress on Numerical Methods for Engineering, Paris, 1-5 Dec. 1980, in print.
- EISLER, R., LAPAN, R. L., TELEK, G., DAVEY, E. W., SOPER, A. E. and BARRY, M. (1977) -Survey of Metals in Sediments Near Quonset Point, Rhode Island. Mar. Pollut. Bull., 8, 260-264.
- FANNUCCI, F., FIERRO, G., GENNESSEAUX, M., REHAULT, J. P. and TABBO, S. (1974) Indagine sismica sulla piattaforma litorale del Savonese (Mar Ligure). Boll. Soc Geol. Ital., 93, 421-435.
- FIERRO, G., GENNESSEAUX, M., REHAULT, J. P. (1973) Caracteres structuraux et sedimentaires du plateau continental de Nice à Genes (Mediterranée Occidentale). Bull. Bur. Rech. Geol. Min., 4, 193-208.
- GREIG, R. A. and MCGRATH, A. (1977) Trace Metals in sediments of Raritan Bay. Mar. Pollut. Bull., 8, 208-214.
- GRIGGS, G. B. and JOHNSON, S. (1978) Bottom Sediment Contamination in the Bay of Naples, Italy. Mar. Pollut. Bull., 8, 208-214.
- HONG, T. C., LI, Y. H. and WU, D. C. (1975) The pollution of heavy metals in the Kaohsiung Harbor, Taiwan. International Conference on Heavy Metals in the Environment, Toronto, Oct. 27-31, 809-820.
- SHIMP, N. F., LELAND, H. V. and WHITE, A. W. (1970) Distribution of major, minor and trace constituents in unconsolidated sediments from Southern Lake Michigan. *Environ. Geol. Notes*, 32, 19 pp.

(ms. pres. il 28 maggio 1981; ult. bozze il 4 gennaio 1982)